

2

Learn Ruby on Rails: Book One

Version 4.0.0, 25 November 2016

Daniel Kehoe

ii

Contents

1 Free Offer and More 1

Get Book Two . 1

Get the Videos . 1

The Online and Ebook Versions 2

2 Introduction 3

Is It for You? . 4

What To Expect . 4

What’s in Book One . 5

What’s in Book Two . 6

A Warning About Links . 6

What Comes Next . 6

Versions . 7

Staying In Touch . 7

A Note to Reviewers and Teachers 7

Using the Book in the Classroom 8

Let’s Get Started . 8

iii

iv CONTENTS

3 Concepts 11

How the Web Works . 11

Programming Languages . 15

Ruby and JavaScript . 15

JavaScript and JQuery . 16

JQuery . 16

Full-Stack JavaScript . 17

Front and Back Ends . 18

Rails 5 . 19

JavaScript Frameworks . 20

AngularJS and Ember.js . 20

React . 21

4 What is Rails? 23

Rails as a Community . 24

Six Perspectives on Rails . 24

Web Browser Perspective . 25

Programmer Perspective . 25

Software Architect Perspective 25

Gem Hunter Perspective . 26

Time Traveler Perspective 27

Tester Perspective . 27

Understanding Stacks . 28

Full Stack . 28

CONTENTS v

Rails Stacks . 30

5 Why Rails? 33

Why Ruby? . 33

Why Rails? . 35

Rails Guiding Principles . 36

Rails is Opinionated . 36

Rails is Omakase . 37

Convention Over Configuration 37

Don’t Repeat Yourself . 38

Where Rails Gets Complicated . 39

When Rails has No Opinion 39

Omakase But Substitutions Are Allowed 39

Conventions or Magic? . 40

DRY to Obscurity . 40

6 Rails Challenges 41

A List of Challenges . 42

It is difficult to install Ruby. 42

Rails is a nightmare on Windows. 42

Why do I have to learn Git? It is difficult. 43

Why worry about versions? 43

Do I really need to learn about testing? 43

Rails error reporting is cryptic. 44

There is too much magic. 44

vi CONTENTS

It is difficult to grasp MVC and REST. 44

Rails contains lots of things I don’t understand. 45

There is too much to learn. 45

It is difficult to find up-to-date advice. 46

It is difficult to know what gems to use. 46

Rails changes too often. 47

It is difficult to transition from tutorials to building real appli-
cations. 47

I’m not sure where the code goes. 47

People like me don’t go into programming. 48

7 Get Help When You Need It 49

Getting Help With Rails . 49

References . 50

RailsGuides . 50

Cheatsheets . 51

API Documentation . 51

Meetups, Hack Nights, and Workshops 51

Pair Programming . 52

Pairing With a Mentor . 53

Code Review . 54

Staying Up-to-Date . 54

8 Plan Your Product 57

Product Owner . 57

CONTENTS vii

User Stories . 58

Wireframes and Mockups . 59

Graphic Design . 60

Software Development Process . 61

Behavior-Driven Development . 63

9 Manage Your Project 67

To-Do List . 67

Kanban . 68

Agile Methodologies . 68

10 Mac, Linux, or Windows 69

Your Computer . 69

Hosted Computing . 70

Installing Ruby . 70

MacOS . 71

Ubuntu Linux . 71

Hosted Computing . 71

Windows . 72

11 Terminal Unix 73

The Terminal . 74

Unix Commands Explained . 75

Getting Fancy With the Prompt . 76

Learning Unix Commands . 76

viii CONTENTS

Exit Gracefully . 77

Structure of Unix Commands . 78

Prompt . 78

Command . 79

Option . 79

Argument . 81

Quick Guide to Unix Commands 81

cd . 82

pwd . 83

ls . 83

Hidden Files and Folders . 84

Dots . 86

open . 87

mkdir . 87

touch . 88

mv . 89

cp . 90

rm . 91

Removing a Folder . 92

The Mouse and the Command Line 93

Arrow Keys . 94

Tab Completion . 94

Why Abbreviations? . 94

CONTENTS ix

12 Text Editor 97

You Don’t Need an IDE . 97

Which Text Editor . 98

Install Atom . 98

Other Choices . 99

How To Use a Text Editor . 99

Editor Shell Command . 99

13 Learn Ruby 101

Ruby Language Literacy . 102

Resources for Learning Ruby . 103

Collaborative Learning . 103

Online Tutorials . 104

Books . 104

Newsletters . 105

Screencasts . 105

14 Crossing the Chasm 107

Facing the Gap . 107

Bridging the Gap With a Strategy 109

Bridging the Gap With Social Practice 111

Making an Effort . 111

Conversation Starters . 112

Pay It Forward . 112

Finding a Mentor . 113

x CONTENTS

Creating Mentorship Moments . 114

Online . 114

GitHub . 115

Meetups . 115

Workshops and Classes . 116

On the Job . 117

What’s Next . 118

Entrepreneurs . 119

Lifestyle Businesses and Personal Projects 120

Build Applications . 121

15 Level Up 123

What to Learn Next . 123

Databases . 125

Testing . 126

Authentication and Sessions 127

Authorization . 128

JavaScript . 129

Other Topics . 129

Curriculum Guides . 130

Places to Learn . 130

Code Camps . 131

Other Classrooms . 132

Online Courses . 133

CONTENTS xi

Videos . 134

Books . 136

A Final Word . 137

16 Version Notes 139

Version 4.0.0 . 139

Version 3.0.0 . 140

Version 2.2.2 . 140

Version 2.2.1 . 140

Version 2.2.0 . 141

Version 2.1.6 . 141

Version 2.1.5 . 141

Version 2.1.4 . 142

Version 2.1.3 . 142

Version 2.1.2 . 142

Version 2.1.1 . 143

Version 2.1.0 . 143

Version 2.0.2 . 144

Version 2.0.1 . 145

Version 2.0.0 . 145

Version 1.19 . 146

Version 1.18 . 147

Version 1.17 . 147

17 Credits and Comments 149

xii CONTENTS

Credits . 149

Financial Backers . 150

Editors and Proofreaders . 150

Photos . 151

Comments . 151

Chapter 1

Free Offer and More

You are reading Book One, which introduces basic concepts and gives you the
background you need to succeed.

Book One is 99 cents on Amazon and free on my own site. Ill also tell you how
to get Book Two plus videos and advanced tutorials.

Get Book Two

In Book Two, you’ll build a useful web application, for hands-on learning. You
should get started with Book Two right away, for hands-on learning. Read
Book Two when you are at your computer; read Book One for background
when you are away from the computer. The two books go together, which is
why I want you to have both books.

Get the Videos

You can watch videos as you read the book. A subscription is only $19 per
month (there’s also a discount when you get the video series plus advanced

1

2 CHAPTER 1. FREE OFFER AND MORE

tutorials). You’ll get Book Two when you get the videos:

• Get Book Two plus the Videos

You can also get Book Two when you buy the advanced Capstone Rails Tuto-
rials, which you’ll want after you finish this book series:

• Get Book Two plus the Videos and Advanced Tutorials

With the videos and the advanced tutorials, I promise there is no better way to
learn Rails.

The Online and Ebook Versions

I’ve created an online version of this book at learn-rails.com. You’ll also find
PDF, Epub (iBooks), and Mobi (Kindle) versions available for download. Look
for the link “Free Online Edition” when you visit the site. It’s free:

• learn-rails.com

You’ll need the invitation code for the free online and ebook editions:

• LR1COM

I’ll ask you to provide your email address when you sign up to get free access. I
work hard to keep the books up to date, incorporating improvements and fixing
errors as readers report issues. I update the books often and I send email to
notify of updates. If you bought the book from Amazon or another retailer,
email is the only way to learn about updates.

Get the ebook version you prefer, get Book Two when you are ready, and let’s
get started.

https://tutorials.railsapps.org/#plans
https://tutorials.railsapps.org/#plans
http://learn-rails.com/
http://learn-rails.com/

Chapter 2

Introduction

Welcome. This is a first step on your path to learn Ruby on Rails.

This book contains the background that’s missing from other tutorials. Here
you’ll learn key concepts so you’ll have a solid foundation for continued study.
Whether you choose to continue with another book in this series, a video
course, or a code school, everything will make sense when you start here.

You can read this book anywhere, at your leisure, on your phone or tablet. Use
this book to gain background understanding when you are not at your computer.
With Book Two, the next in the series, you’ll need a computer at hand so you
can build your first web application.

In Book Two, you’ll build a working web application so you’ll gain hands-on
experience. Along the way, you’ll practice techniques used by professional
Rails developers. And I’ll help you’ll understand why Rails is a popular choice
for web development.

You can start with Book Two before finishing this book if you’re eager to get
started building your first application. In fact, I recommend it, because the
hands-on learning in Book Two reinforces the concepts you learn in this book.

3

4 CHAPTER 2. INTRODUCTION

Is It for You?

If you’ve built simple websites using HTML, you’ll quickly progress to build-
ing websites with Rails. Or, if you have experience in a language such as PHP
or Java, you’ll make the jump to the Rails framework. But I promise you don’t
need to be a programmer to succeed with this book or the next. You’ll be sur-
prised how quickly you become familiar with the Unix command line interface
and the Ruby programming language even if you’ve never tried programming
before.

My books are ideal if you are:

• a student

• a startup founder

• making a career change

If you are starting a business, and hiring developers, or working alongside de-
velopers as a manager or developer, this book will help you talk with develop-
ers. However, the true purpose of my book is to help you become you a Rails
developer yourself. I want to help you launch a startup or begin a new career.

What To Expect

There is deep satisfaction in building an application and making it run. With
this book and the next, I’ll give you everything you need to build a real-world
Rails application. More importantly, I’ll explain everything you build, so you
understand how it works.

When you’ve completed this tutorial, you will be ready for more advanced self-
study, including the Capstone Rails Tutorials, textbook introductions to Rails,
or workshops and code camps that provide intensive training in Ruby on Rails.

https://tutorials.railsapps.org/

WHAT TO EXPECT 5

Other curriculums often skip the basics. With this tutorial you’ll have a solid
grounding in key concepts. You won’t feel overwhelmed or frustrated as you
continue your studies. I think you’ll also have fun!

This book and the next are good preparation for:

• textbooks such as Michael Hartl’s Ruby on Rails Tutorial

• introductory workshops from RailsBridge or Rails Girls

• intensive training with immersive code camps

• Capstone Rails Tutorials from the RailsApps Project

We are blessed with many textbooks, workshops, and classroom programs that
teach Ruby on Rails. I believe this book is unique in covering the basics while
introducing the tools and techniques of professional Rails development.

What’s in Book One

Book One is a self-help book that can change your life, though here you won’t
find any inspirational quotes or magical thinking.

I explain the culture and practices of the Rails community. I introduce the basic
concepts you’ll need to understand web application development. You’ll learn
how to be a successful learner and how to get help when you need it. I also
provide a plan for study so you can learn more when you need it. There’s so
much to learn, it helps to have a map so you know where to go next.

Programming can be frustrating and Rails isn’t easy for beginners. The chapter,
“Rails Challenges,” describes many of the problems learners encounter. It’s
natural to get discouraged so take a look when you begin to feel overwhelmed.

Two chapters, “Crossing the Chasm”, and “Level Up”, will help you after you
put the book down. Many learners feel stranded if their only experience is
step-by-step tutorials. These chapters are designed to give you a strategy for
building an application on your own.

https://www.railstutorial.org/
http://railsbridge.org/
http://railsgirls.com/
https://tutorials.railsapps.org/
http://railsapps.github.io/

6 CHAPTER 2. INTRODUCTION

What’s in Book Two

You’ll start coding in Book Two. It’s a hands-on tutorial that will lead you
through the code needed to build a real-world web application. Don’t skip
around in Book Two. The tutorial is designed to unfold in steps, one section
leading to another, until you reach the “Testing” chapter.

You can complete Book Two in one long weekend, though it will take concen-
tration and stamina. If you work through the book over a longer timespan, try
to set aside uninterrupted blocks of two hours or more for reading and coding,
as it takes time to focus and concentrate.

Feel free to start Book Two before you finish this book. Begin coding with
Book Two while you get background knowledge from this book at your leisure.

Visit tutorials.railsapps.org to learn how to get Book Two.

A Warning About Links

My books are densely packed with links to background reading. If you click
every link, you’ll be a well-informed student, but you may never finish the
book! It’s up to you to master your curiosity. Follow the links only when you
want to dive deeper.

What Comes Next

The best way to learn is by doing; when it comes to code, that means building
applications. Hands-on learning with actual Rails applications is the key to
absorbing and retaining knowledge.

After you read this book, you’ll be able to work with the example applications
from the RailsApps Project. The project provides open source example ap-
plications for Rails developers, for free. Each application is accompanied by a
tutorial in the Capstone Rails Tutorials series, so there’s no mystery code. Each

https://tutorials.railsapps.org/#plans
http://railsapps.github.io/

WHAT TO EXPECT 7

application can be generated in a few minutes with the Rails Composer tool,
which professional developers use to create starter applications.

The RailsApps Project is solely supported by sales of the books, videos, and
advanced tutorials. If you make a purchase, you’ll keep the project going. And
you’ll have my sincere appreciation for your support.

Versions

Book One is relevant and useful for any version of Rails. Book Two requires a
specific version of Rails (the newest at the time it was revised) and shows how
to install the latest version of Rails.

Staying In Touch

If you obtained this book from Amazon or another retailer, take a moment to
get on the mailing list for the book. I’ll let you know when I release updates to
the book.

• Get on the mailing list for the book

A Note to Reviewers and Teachers

This book approaches the subject differently than most introductions to Rails.
It introduces concepts of product planning, project management, and website
analytics to place development within a larger context of product development
and marketing. In Book Two, rather than show the student how to use scaf-
folding, I introduce the model-view-controller design pattern by creating the
components manually. Lastly, though every other Rails tutorial shows how to
use a database, Book Two doesn’t, because I want the book to be a short intro-
duction and I believe the basic principles of a web application stand out more

https://www.railscomposer.com
http://learn-rails.com/mailinglist

8 CHAPTER 2. INTRODUCTION

clearly without adding a database to the application. Though this tutorial is
not a typical Rails introduction, I hope you’ll agree that it does a good job in
preparing Rails beginners for continued study, whether it is a course or more
advanced books.

Using the Book in the Classroom

If you’ve organized a workshop, course, or code camp, and would like to assign
the book as recommended reading, contact me at daniel@danielkehoe.com to
arrange access to the book for your students. The book is available at no charge
to students enrolled in qualified workshops or classes.

Let’s Get Started

In the next chapter, we’ll start with basic concepts.

mailto:daniel@danielkehoe.com

WHAT TO EXPECT 9

Figure 2.1: The application you will build in Book Two.

10 CHAPTER 2. INTRODUCTION

Chapter 3

Concepts

This chapter provides the background, or big picture, you will need to under-
stand Rails.

These are the key concepts you’ll need to know before you try to use Rails.

In the following two chapters, you’ll gain a deeper understanding of Rails,
including its history, the guiding principles of Rails, and reasons for its popu-
larity. First, let’s consider how the web works.

How the Web Works

We start with absolute basics, as promised.

When you “visit a website on the Internet” you use a web browser such as
Safari, Chrome, Firefox, or Internet Explorer.

Web browsers are applications (software programs) that work by reading files.

Compare a word processing program with a web browser. Both word process-
ing programs and web browsers read files. Microsoft Word reads files that are
stored on your computer to display documents. A web browser retrieves files
from remote computers called servers to display web pages. Simply put, the

11

12 CHAPTER 3. CONCEPTS

World Wide Web is nothing more than files delivered to web browsers by web
servers.

Web browsers make requests to web servers. Every web address, or URL, is a
request to a web server. A web server responds by sending one or more files.
We call this the request-response cycle.

Everything displayed by a web browser comes from four kinds of files:

• HTML - structure (layout) and content (text)

• CSS - stylesheets to set visual appearance

• JavaScript - programming to alter the page

• Multimedia - images, video, or other media files

At a minimum, a web page requires an HTML file. HTML files contain the
words you see on a web page, along with markup tags that indicate headlines,
paragraphs, and other types of text such as lists. If a web browser receives
only an HTML file, it will display text, with default styles for headlines and
paragraphs supplied by the browser.

Because it is the World Wide Web, HTML files also contain hypertext links to
other web pages. Sometimes links appear in the form of a button or an image.
Sometimes a web page contains a form with a button that sends information to
the web server. Links are web addresses, or URLs, and (you guessed it), they
return files.

If the page is always the same, every time it is displayed by the web browser,
we say it is static. Webmasters don’t need software such as Rails to deliver
static documents; they just create files for delivery by an ordinary web server
program. When you learn HTML and create simple web pages, you learn to
upload files to a hosting service that provides web servers that deliver your
HTML files to web browsers. In principle, you can run a web server delivering
web pages from your computer at home but, in practice, most people want a

HOW THE WEB WORKS 13

web server that runs 24 hours a day and is located in a data center that has fast
and reliable connections to the Internet.

Static websites are ideal for particle-physics papers (which was the original
use of the World Wide Web). But most sites on the web, especially those that
allow a user to sign in, post comments, or order products and services, generate
web pages dynamically. When you see a form with a button, you probably are
looking at a page that makes a request to a web application.

Dynamic websites often combine web pages with information from a database.
A database stores information such as a user’s name, comments, advertise-
ments, or any other repetitive, structured data. A database query can provide a
selection of data that customizes a webpage for a particular user or changes the
web page so it varies with each visit.

Dynamic websites use a programming language such as Ruby to assemble
HTML, CSS, and JavaScript files on the fly from component files or a database.
A software program written in Ruby and organized using the Rails development
framework is a Rails web application. A web server program that runs Rails ap-
plications to generate dynamic web pages is an application server (but usually
we just call it a web server).

Software such as Rails can access a database, combining the results of a database
query with static content to be delivered to a web browser as HTML, CSS, and
JavaScript files. Keep in mind that the web browser only receives ordinary
HTML, CSS, and JavaScript files; the files themselves are assembled dynami-
cally by the Rails application running on the server.

Even if you are not going to use a database, there are good reasons to generate
a website using a programming language. For example, if you are creating
several web pages, it often makes sense to assemble an HTML file from smaller
components. For example, you might make a small file that will be included on
every page to make a footer (Rails calls these “partials”). Just as importantly,
if you are using Rails, you can add features to your website with code that has
been developed and tested by other people so you don’t have to build everything
yourself.

http://en.wikipedia.org/wiki/Ruby_(programming_language)

14 CHAPTER 3. CONCEPTS

The widespread practice of sharing code with other developers for free, and
collaborating with strangers to build applications or tools, is known as open
source software development. Rails is at the heart of a vibrant open source
development community, which means you leverage the work of tens of thou-
sands of skilled developers when you build a Rails application. When Ruby
code is packaged up for others to share, the package is called a gem. The name
is apt because shared code is valuable, like a gem.

Ruby is a programming language. Rails is a development framework. Rails
is software code written in the Ruby language. It is a library or collection of
gems that we add to the core Ruby language. More importantly, Rails is a set
of structures and conventions for building a web application using the Ruby
language. By using Rails, you get well-tested code that implements many of
the most-needed features of a dynamic website. When you need additional
features, you can add additional gems.

With Rails, you will be using shared standard practices that make it easier to
collaborate with others and maintain your application. As an example, con-
sider the code that is used to access a database. Using Ruby without the Rails
framework, or using another language such as PHP, you could mix the com-
plex programming code that accesses the database with the code that generates
HTML. With the insight of years of developers’ collective experience in main-
taining and debugging such code, Rails provides a library of code that segre-
gates database access from the code that displays pages, enforcing separation
of concerns, and making more modular, maintainable programs.

In a nutshell, that’s how the web works, and why Rails is useful.

For more on the history of Rails, and an explanation of why it is popular, see
the next chapters. But before we dive into Rails, let’s look at the increasingly
complex world of web development, particularly the difference between front-
end and back-end applications, and the programming languages we use, Ruby
and JavaScript.

http://en.wikipedia.org/wiki/Open-source_software
http://en.wikipedia.org/wiki/Open-source_software
http://en.wikipedia.org/wiki/Separation_of_concerns
http://en.wikipedia.org/wiki/Separation_of_concerns

PROGRAMMING LANGUAGES 15

Programming Languages

JavaScript and Ruby are both general-purpose programming languages.

Developers use other popular programming languages such as C, Python, and
Java. And developers like to talk about newer languages such as Elixir and Go,
often comparing the popularity of programming languages. Most developers
use only one or two popular languages on the job such as Ruby and JavaScript
but hardcore programmers love to try new languages.

Just a note: Java and JavaScript are unrelated, except by name. Java is a
general-purpose language used in large enterprises, such as banking, where
large teams of developers build applications. JavaScript is a language that was
developed for use in web browsers. It was named “JavaScript” to take advan-
tage of the popularity of Java but has little in common with Java except for the
name.

And a further note: HTML, the Hypertext Markup Language, is not a program-
ming language. It is a markup language that uses tags to add structure and
links to text. It doesn’t allow conditional execution such as if... then...
else which is key to programming. If you know HTML you can be a “coder,”
writing HTML code, but you are not really a programmer.

Ruby and JavaScript

Ruby is the programming language you’ll use when creating web applications
that run on your local computer or a remote server using the Rails web appli-
cation development framework.

JavaScript is the programming language that controls every web browser. The
companies that build web browsers (Google, Apple, Microsoft, Mozilla, and
others) agreed to use JavaScript as the standard browser programming lan-
guage. You might imagine an alternative universe in which Ruby was the
browser programming language. That’s not the real world; plus it would be

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

16 CHAPTER 3. CONCEPTS

boring, as learning more than one language makes us smarter and better pro-
grammers.

JavaScript and JQuery

Though most of the code in Rails applications is written in Ruby, developers
add JavaScript to Rails applications to implement features such as browser-
based visual effects and user interaction. For simple Rails applications, you
only need to learn Ruby. For more sophisticated web applications, you’ll need
to know both Ruby and JavaScript.

JavaScript was first used on websites to add little features to the browser. For
example, JavaScript can be used to display the current date and time on a web
page. Or JavaScript can be used to pop up an annoying window when you try to
leave a web page. There was little consistent structure to early JavaScript pro-
grams. And because JavaScript is an older language without a built-on package
manager, there were no package libraries like Ruby gems to add functionality.
Instead, web developers shared scripts or snippets of code to add commonly-
implemented features.

JQuery

In 2006, a group of developers released jQuery, a robust collection of scripts
that are a foundation for most of the simple interactive user features found on
websites today. Rails includes jQuery as part of any Rails application. You’ll
find jQuery on 65% of websites.

To understand jQuery, you need to know that every web browser takes an in-
termediate step between receiving an HTML file and displaying a web page.
After a web browser receives a file from a web server, it creates code in the
computer’s memory that describes the web page, complete with text and for-
matting, which we call the Document Object Model, or DOM. JQuery scripts

https://en.wikipedia.org/wiki/JQuery

JAVASCRIPT AND JQUERY 17

manipulate the DOM, which is the web browser’s internal representation of
web page. JQuery commands make changes to the DOM. For example, you
can write Javascript that replaces words on the page with different words. Or
you can hide and reveal sections of the page.

Many Rails applications use jQuery or pure JavaScript to add interactive browser
features. Though it is easy to add JavaScript to web pages generated by Rails,
the result is often “JavaScript gravy” or “soup:” a sloppy mix of JavaScript
snippets and jQuery plugins poured over Rails views. After seeing applications
built with JavaScript soup, developers often get an urge to adopt a framework
like Rails for JavaScript, with standard structures and conventions to organize
code.

We’ll look at JavaScript frameworks later in this chapter. But first, consider
a universe where JavaScript is the only language you need to know. Not all
developers use Rails; some use full-stack JavaScript.

Full-Stack JavaScript

In the last few years, developers have been improving the JavaScript language
so it can be used for server-side development as well as development of appli-
cations that run in the browser. System administrators can install the Node.js
code library to enable servers to run JavaScript. Server-side JavaScript web ap-
plication frameworks are available, such as Express and Meteor, but none are
as popular as Ruby on Rails. Some code schools are now teaching “full stack
JavaScript” using the “MEAN Stack,” which combines four popular JavaScript
technologies; MongoDB, Express, AngularJS, and Node.js.

There are at least a dozen popular languages that developers use to build web
applications. This will continue to be true. Full-stack JavaScript is now an op-
tion but Rails is not going away. For now, the Rails ecosystem is better known
with more resources for building web applications and learning development.
There will always be jobs for Rails developers. Startups will always be able to
find developers who have experience with Rails. Your effort in learning Rails
will continue to be worthwhile. However, it is important to learn JavaScript as

http://en.wikipedia.org/wiki/Nodejs
http://expressjs.com/
http://www.meteor.com/

18 CHAPTER 3. CONCEPTS

well.

Front and Back Ends

We often talk about “front-end” and “back-end” development. The architecture
of the web, split between web browsers running on local computers and web
application programs running on remote servers, is inherently client-server.
When we write applications for both the front end and back end, we are full-
stack developers.

Full-stack developers handle it all, including connections to database servers,
server-side web applications, JavaScript for web browsers, and system adminis-
tration of Unix servers. Increasingly, as web development gets more complex,
there are fewer full-stack developers and more specialists. If you are building
a web application for your own business, you may need to be a full-stack de-
veloper. But if you look for a job, you may choose to specialize as a front-end
or back-end developer. Front-end developers have some design skill, worry a
lot about user experience, and develop expertise with JavaScript. Back-end de-
velopers don’t worry as much about design. They focus on the architecture of
applications, database structure, and application performance using Ruby.

Rails was originally created for full-stack development. Its model-view-controller
architecture manages both connections to databases and display of web pages,
requiring nothing more than the Ruby language and the Rails software library.
JavaScript was originally created for front-end development. Some developers
now use JavaScript for full-stack development but it is still primarily used for
adding interactive features to web pages.

Rails is popular for both the front end and the back end. The conventions of
building Rails applications are widely known and a developer can leverage the
work of tens of thousands of other developers by including open-source gems.
A Rails back end can connect to thousands of different services and efficiently
handle traffic for any average website. If your business is so successful that you
must deal with problems of scale, you’ll find many Rails experts able to help.

RAILS 5 19

For these reasons, developers continue to use Rails to build web applications,
even as full-stack JavaScript grows in popularity.

JavaScript is becoming more popular but developers will continue to build full-
stack Rails applications where complex JavaScript user interfaces are not re-
quired. This could be quick “minimal viable product” (MVP) tests of business
ideas or any project where it is too costly to invest in separate front-end and
back-end development. If you are going to quickly build a web application,
and launch a business, just build it with Rails and don’t worry about imple-
menting features in JavaScript.

If you want a complex front end that uses JavaScript extensively, you may still
want to use Rails for the back end.

Rails 5

Rails 5.0 is the newest version of Rails.

Rails 5 recognizes the increasing use of Rails for back-end development. Rails
5 offers an option to build back-end-only applications that don’t generate browser
views. Instead, a stripped-down Rails 5 application returns data that can be con-
sumed and displayed by another application. With this approach, you can have
Rails on the back end and a JavaScript web browser application, or a mobile
application, on the front end.

With Rails 5, you can build a back-end application that just delivers data to a
front-end application. Before Rails 5, most Rails applications generated entire
web pages containing the results from a database query. Now with Rails 5,
Rails developers have begun to build web applications that deliver just data, in
the JSON (JavaScript Object Notation) format. With this approach, the Rails
application provides an API, or application programming interface, that pro-
vides standardized responses to requests from an application in the hands of a
user, which could be an IOS or Android application on a phone, or a JavaScript
application running in a web browser.

20 CHAPTER 3. CONCEPTS

Now that you’ve learned about the differences between front-end and back-end
applications, let’s learn about popular JavaScript frameworks.

JavaScript Frameworks

I’ve described Rails as a web development framework that uses the Ruby lan-
guage. You can also find web development frameworks that use the JavaScript
language.

JavaScript frameworks were first developed so developers could build SPAs,
single-page applications. Early examples of SPAs, such as Apple’s MobileMe
or iWork in 2008, were attempts to use JavaScript to build desktop-like appli-
cations to run in the web browser. The goal was to create RIAs, rich Internet
applications, with similarities to software applications installed on the Mac or
Windows, using JavaScript. Of course, no one really wants desktop applica-
tions anymore. We browse web pages to get information. We install mobile
apps to get access to services. Sometimes we want access to services in web
browsers. But we don’t really want desktop applications in a web browser.

AngularJS and Ember.js

AngularJS and Ember.js are the most popular JavaScript frameworks used to
build single-page applications. They provide the structure and conventions that
developers want for maintainable code. For complex, richly interactive web
applications, these frameworks get rid of the “JavaScript soup” that is common
in Rails applications.

Unlike Rails, which is hugely popular, none of these JavaScript frameworks
have achieved hegemony or dominance among developers. For a learner, these
frameworks require more programming experience than Rails. All of these
frameworks break the familiar request-response cycle of the web. Just one URL
delivers the entire single-page application. There are no web pages, only views

http://angularjs.org/
http://emberjs.com/

JAVASCRIPT FRAMEWORKS 21

that change completely or partially in response to user actions. Drawbacks
to single-page applications are a slow initial load of the application, difficulty
using analytics tools such as Google Analytics which rely on new pages loading
in the browser, and views that won’t show up in Google search results. For all
these reasons, single-page applications are best used to deliver services, not
information, and require advanced skills to develop.

React

There’s a newer framework that can be used to dry up JavaScript soup. It’s
React, a JavaScript framework developed by engineers at Facebook. It can be
used for single-page applications or to organize JavaScript for interactive fea-
tures in ordinary Rails applications. Unlike AngularJS or Ember.js, React only
manages views, not connections to databases or routing of requests, so it is not
a full-stack framework, just a framework for the view layer. React’s approach
to building web pages is abstract and complex. But React is a good choice for
complex interactive features, if you’re determined to avoid JavaScript soup in
your Rails application.

Ultimately, your decision to use JavaScript, and how much, depends on the kind
of web application you want to build. If you want to build a product catalog,
with many simple pages populated by a database, a full-stack Rails application
may be all you need, perhaps with a few jQuery plugins. If your application is
like Facebook, with lots of interactive features and many different pages, React
may be a good choice as part of a full-stack Rails application. If you want
to deliver a service such as live stock-market charts, you may want to build a
complex single-page application using AngularJS or Ember.js, plus IOS and
Android apps, connected to a Rails API server.

If you’re going to use JavaScript, either full-stack, or combined with Rails, use
a JavaScript framework to avoid JavaScript soup. React could be a good place
to start.

You’ll have a better idea of the importance of Rails if you understand “What is
Rails?” Let’s look at that next.

http://reactjs.com/

22 CHAPTER 3. CONCEPTS

Chapter 4

What is Rails?

Rails is a library, or collection of code, plus structures and conventions for
building a web application.

Technically, it is a package library (a RubyGem), that is installed using the
operating system command-line interface, and adds functionality to the Ruby
language.

Rails provides structures and conventions for web development, so less code is
required to build a web application. All Rails applications use the same struc-
tures, providing consistency among applications. Common and well-known
conventions make it easy for developers to collaborate on Rails applications
and share improvements and add-on code libraries with a wide community.

The structures and conventions of Rails are codified as the Rails API (the ap-
plication programming interface, or directives that control the code). The Rails
API is documented online and described in books, articles, and blog posts.
Learning Rails means learning how to use the Rails conventions and its API.

23

http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Application_programming_interface
http://api.rubyonrails.org/

24 CHAPTER 4. WHAT IS RAILS?

Rails as a Community

Rails, in a larger sense, is more than a software library and an API. Rails is the
central project of a vast community that produces software libraries that sim-
plify the task of building complex websites. Members of the Rails community
share many core values, often use the same tools, and support each other with
an informal network that is built on volunteerism. Overlapping the informal
community is an economic network that includes jobs, recruiters, consulting
firms, conferences, businesses that build websites with Rails, and investors that
fund startups. Rails is popular among web startups, significantly because the
pool of open source software libraries (RubyGems, or “gems”) makes it possi-
ble to build complex sites quickly.

This, then, is Rails: a software library and an API, plus a community of en-
thusiastic developers. But to learn to use Rails, you’ll need to consider it from
additional points of view.

Six Perspectives on Rails

To really understand Rails, and succeed in building Rails applications, we need
to consider Rails from six additional perspectives.

A parable from the Indian subcontinent describes six blind men who encounter
an elephant. The blind man who feels a leg says the elephant is like a pillar; the
one who feels the tail says the elephant is like a rope; the one who feels the belly
says the elephant is like a wall; and so on. Like six blind men encountering
an elephant, it can be difficult to understand Rails unless you look at it from
multiple points of view.

Here are six different ways of looking at Rails.

SIX PERSPECTIVES ON RAILS 25

Web Browser Perspective

From the perspective of the web browser, Rails is simply a program that gen-
erates HTML, CSS, and JavaScript files. These files are generated dynamically.
You can’t see the files on the server side but you can view these files by using
the web developer tools that are built in to every browser. Later you’ll examine
these files when you learn to troubleshoot a Rails application.

Programmer Perspective

From the perspective of a programmer, Rails is a set of files organized with
a specific structure. The structure is the same for every Rails application; this
makes it easy to collaborate with other Rails developers. We use text editors to
edit these files to make a web application.

Software Architect Perspective

From the perspective of a software architect, Rails is a structure of abstrac-
tions that enable programmers to collaborate and organize their code. Thinking
in abstractions means we group things in categories and analyze relationships.
Conceptual categories and relationships can be made “real” in code. Software
programs are built of “concepts made real” that are the moving parts of a soft-
ware machine.

Notice that we are talking about abstractions, using language like a philoso-
pher. Most tutorials give you step-by-step instructions, like following a recipe.
You’ll get that in Book Two in this series. But to really understand program-
ming, you should grasp that we are working with “abstractions made real.” The
area of your brain that follows instructions is distinct from the area that thinks
abstractly. To be a programmer, you’ll need both parts of the brain working
together. Don’t worry; I’ll explain the abstractions in terms anyone can under-
stand.

26 CHAPTER 4. WHAT IS RAILS?

To a software architect, classes are the basic parts of a software machine. A
class can represent something in the physical world as a collection of various
attributes or properties (for example, a User with a name, password, and email
address). Or a class can describe another abstraction, such as a Number, with
attributes such as quantity, and behavior, such as “can be added and subtracted.”
You’ll get a better grasp of classes in Book Two when you learn “Just Enough
Ruby.”

To a software architect, Rails is a pre-defined set of classes that are organized
into a higher level of abstraction known as an API, or application programming
interface. The Rails API is organized to conform to certain widely known
software design patterns. You’ll become familiar with these abstractions as
you build a Rails application. In Book Two, you’ll learn about the model–
view–controller design pattern. As a beginner, you will see the MVC design
pattern reflected in the file structure of a Rails application. That’s where you
will first see “abstractions made real.”

If you’ve subscribed to the video series or purchased the advanced tutorials,
this eight minute video introduces the model–view–controller concept:

• Model View Controller in Rails

Gem Hunter Perspective

We can look at Rails from the perspective of a gem hunter. Rails is popular
because developers have written and shared many software libraries (RubyGems,
or “gems”) that provide useful features for building websites. We can think of
a Rails application as a collection of gems that provide basic functionality, plus
custom code that adds unique features for a particular website. Some gems
are required by every Rails application. For example, database adaptors enable
Rails to connect to databases. Other gems are used to make development eas-
ier, for example, gems for testing that help programmers find bugs. Still other
gems add functionality to the website, such as gems for logging in users or
processing credit cards. Knowing what gems to use, and why, is an important

http://api.rubyonrails.org/
http://en.wikipedia.org/wiki/Software_pattern
http://en.wikipedia.org/wiki/Model%E2%80%93View%E2%80%93Controller
http://en.wikipedia.org/wiki/Model%E2%80%93View%E2%80%93Controller
https://tutorials.railsapps.org/videos/11

SIX PERSPECTIVES ON RAILS 27

aspect of learning Rails.

You don’t need a subscription to view this free video introducing RubyGems:

• Free Video Lesson: What Are RubyGems

Time Traveler Perspective

We can also look at Rails from the perspective of a time traveler in order
to understand the importance of software version control. Specifically, we use
the Git revision control system to record a series of snapshots of your project’s
filesystem. Git makes it easy to back up and recover files; more importantly,
Git lets you make exploratory changes, trying out code you may decide to
discard, without disturbing work you’ve done earlier. You can use Git with
GitHub, a popular “social coding” website, for remote backup of your projects
and community collaboration. Git can keep multiple versions (“branches”) of
your local code in sync with a remote GitHub repository, making it possible to
collaborate with others on open source or proprietary projects. Strictly speak-
ing, Git and GitHub are not part of Rails (they are tools that can be used on any
development project). And there are several other version control systems that
are used in open source development. But a professional Rails developer uses
Git and GitHub constantly on any real-world Rails project.

Tester Perspective

Finally, we can consider a Rails application from the perspective of a tester.
Software testing is part of Rails culture; Rails is the first web development
platform to make testing an integrated part of development. Before Rails, au-
tomated testing was rarely part of web development. A web application would
be tested by users and (maybe) a QA team. If automated tests were used, the
tests were often written after the web application was largely complete. Rails
introduced the discipline of Test-Driven Development (TDD) to the wider web

https://tutorials.railsapps.org/videos/3
http://en.wikipedia.org/wiki/Git_(software)
https://github.com/

28 CHAPTER 4. WHAT IS RAILS?

development community. With TDD, tests are often written before any imple-
mentation coding. It may seem odd to write tests first, but for a skilled TDD
practitioner, it brings coherence to the programming process. First, the devel-
oper will give thought to what needs to be accomplished and think through
alternatives and edge cases. Second, the developer will have complete test cov-
erage for the project. With good test coverage, it is easier to refactor, rearrang-
ing code to be more elegant or efficient. Running a test suite after refactoring
provides assurance that nothing inadvertently broke after the changes. TDD
is seen as a necessary skill of an experienced Rails developer. Book Two will
introduce you to the basic concepts of test-driven development and show you
how to write simple tests.

You’ve seen Rails from six different perspectives. You understand Rails is a
software library plus an API, as well as a community of developers. Now let’s
dive deeper and consider how Rails fits in to a larger technology stack and how
it can vary within the stack.

Understanding Stacks

To understand Rails from the perspective of a professional Rails developer,
you’ll need to grasp the idea of a technology stack and recognize that Rails can
have more than one stack.

Full Stack

A technology stack is a set of technologies or software libraries that are used
to develop an application or deliver web pages. “Stack” is a term that is used
loosely and descriptively. It is a collection of technologies that fit together,
interacting with each other, and providing different types of services. We say
“stack” because we use different software systems or software libraries as if
they were building blocks or bricks deployed in layers.

Often we consider a stack as layers added to the operating system. For a web

UNDERSTANDING STACKS 29

application, we need a web server, a database, a programming language, and
perhaps additional software libraries.

Earlier we learned that full-stack developers have skills to work with operating
systems, web servers, databases, web applications, and JavaScript programs in
a web browser. That’s a formidable stack of technologies.

There is no organization that tells you what building blocks you must use. As a
technologist, your choice of stack reflects your experience, values, and personal
preference, just like religion or favorite beverage.

For example, Mark Zuckerberg developed Facebook in 2004 using the LAMP
application stack:

• Linux (operating system)

• Apache (web server)

• MySQL (database)

• PHP (programming language)

Zuckerberg chose an operating system, a web server, a database, and a pro-
gramming language with which he was comfortable. In 2004, Rails was not
well known and Zuckerberg chose to implement his ideas using PHP without
any additional web application software library.

For this tutorial, your application stack will be:

• MacOS, Linux, or Windows

• Puma (web server)

• SQLite (database)

• Ruby on Rails (language and framework)

http://en.wikipedia.org/wiki/LAMP_(software_bundle)

30 CHAPTER 4. WHAT IS RAILS?

You’ll use an operating system that’s familiar to you, a basic web server that
comes with Ruby, a database that’s preinstalled with Mac or Linux operating
system, the Ruby language, and the Rails web application software library.

Rails Stacks

Sometimes when we talk about a stack, we only care about part of a larger
stack. For example, a Rails stack includes the gems we choose to add features
to a website or make development easier. When we select the gems we’ll use
for a Rails application, we’re choosing a stack or layers of services we need
just for a web application.

Sometimes the choice of components is driven by the requirements of an ap-
plication. At other times, the stack is a matter of personal preference. Just as
craftsmen and aficionados debate the merits of favorite tools and techniques in
any profession, Rails developers avidly dispute what’s the best Rails stack for
development.

The company 37signals, where the creator of Rails works, uses this Rails stack:

• ERB for view templates

• MySQL for databases

• Minitest for testing

It is not important (at this point) to know what the acronyms mean (we’ll learn
later).

Another stack is more popular among Rails developers:

• Haml for view templates

• PostgreSQL for databases

http://37signals.com/

UNDERSTANDING STACKS 31

• RSpec for testing

We’ll learn later what the terms mean. For now, just recognize that parts of the
Rails framework can be swapped out, just like making substitutions when you
order from a menu at a restaurant. The Rails stack can vary, and it is part of a
larger stack that includes an operating system, web server, and database.

You can learn much about Rails by following the experts’ debates about the
merits of a favorite stack. The debates are a source of much innovation and
improvement for the Rails framework. In the end, the power of the crowd
prevails; usually the best components in the Rails stack are the most popular.

The proliferation of choices for the Rails stack can make learning difficult,
particularly because the components used by many leading Rails developers
are not the components used in many beginner tutorials. In this tutorial, we
stick to solid ground where there is no debate. In the advanced Capstone Rails
Tutorials, we’ll explore stack choices and choose components that are most
often used by professional developers.

https://tutorials.railsapps.org/
https://tutorials.railsapps.org/

32 CHAPTER 4. WHAT IS RAILS?

Chapter 5

Why Rails?

Before you start building an application with Rails, it may help to know why
developers like using Rails. This chapter looks at the history of Rails, its orga-
nizing principles, and the reasons for its popularity. First, though, we’ll con-
sider Ruby, the language used for Rails.

Why Ruby?

Ruby is a programming language, created 20 years ago by Yukihiro “Matz”
Matsumoto. By most measures of programming language popularity, Ruby
ranks among the top ten, though usually as tenth (or so) in popularity, and
largely due to the popularity of Rails. Like Java or the C language, Ruby is a
general-purpose programming language, though it is best known for its use in
web programming.

In a podcast from This Developer’s Life and in an interview from 2005, David
Heinemeier Hansson, the creator of Rails, describes building an online project
management application named BaseCamp in 2004. He had been using the
PHP programming language because he could get things done quickly but was
frustrated because of a lack of abstraction and frequently repetitive code that
made PHP “dirty.” Hansson wanted to use the “clean” software enginering ab-

33

http://pypl.github.io/PYPL.html
http://thisdeveloperslife.com/post/1-0-5-homerun
http://www.oreillynet.com/network/2005/08/30/ruby-rails-david-heinemeier-hansson.html

34 CHAPTER 5. WHY RAILS?

stractions supported in the Java programming language but found development
in Java was cumbersome. He tried Ruby and was excited about the ease of use
(he calls it pleasure) he found in the Ruby language.

Ruby is known among programmers for a terse, uncluttered syntax that doesn’t
require a lot of extra punctuation. Compared to Java, Ruby is streamlined,
with less code required to create basic structures such as data fields. Ruby is
a modern language that makes it easy to use high-level abstractions such as
metaprogramming. In particular, metaprogramming makes it easy to develop
a “domain specific language” that customizes Ruby for a particular set of uses
(Rails and many gems use this “DSL” capability).

Ruby’s key advantage is RubyGems, the package manager that makes it easy
to create and share software libraries (gems) that extend Ruby. RubyGems pro-
vides a simple system to install gems. Anyone can upload a gem to the central
RubyGems website, making the gem immediately available for installation by
anyone. The RubyGems website is where you’ll obtain the most recent ver-
sion of Rails. And it is where you will obtain all the gems that help you build
complex websites.

Ruby has several disadvantages (at least when programmers want to argue). Its
processing performance is slow relative to C++ or Java. The execution speed of
a language is seldom important, though, relative to the benefits gained by pro-
grammer productivity and the general level of performance required by most
websites. For websites that require lots of simultaneous activity, Ruby is not
well-suited to the sophisticated software engineering required to execute simul-
taneous activity efficiently (standard Ruby lacks “parallelism”, though some
versions support it). Lastly, some programmers complain that Ruby programs
(and especially Rails) contain “too much magic” (that is, complex operations
that are hidden behind simple directives). These concerns haven’t stopped Rails
from becoming a popular web development platform.

WHY RAILS? 35

Why Rails?

Rails is popular and widely used because its conventions are pervasive and
astute. Any web application has complex requirements that include basic func-
tions such as generating HTML, processing form submissions, or accessing a
database. Without a web application development framework, a programmer
has a mammoth task to implement all the required infrastructure. Even with a
web application development framework, a programmer can take an idiosyn-
cratic approach, building something that no one else can easily take apart and
understand. The singular virtue of Rails is that Heinemeier Hansson, and the
core team that joined him, decided that there is one best way to implement
much of the infrastructure required by a web application. Many of the imple-
mentation decisions appear arbitrary. In fact, though Heinemeier Hansson is
often lambasted as autocratic in his approach to improving Rails, the Rails API
reflects deep experience and intelligence in implementing the requirements of
a web application development framework. The benefit is that every developer
who learns the “Rails way” produces a web application that any other Rails
developer can unravel and understand more quickly than if they encountered
idiosyncratic code without as many conventions. That means collaboration is
easier, development is quicker, and there’s a larger pool of open source libraries
to enhance Rails.

The advantage of establishing conventions might seem obvious, but when Rails
was released in 2004, web development was dominated by PHP, which lent it-
self to idiosyncratic code produced by solo webmasters, and Java frameworks
such as Struts, which were often seen as burdened by an excess of structure.
Other frameworks, such as Apple’s WebObjects, Adobe’s ColdFusion, and Mi-
crosoft’s .NET Framework, were in wide use but the frameworks were products
controlled by the companies and built by small teams, which tended to restrict
innovation. Today PHP, Java frameworks, and .NET remain popular, largely
among solo webmasters (PHP), enterprise teams (Java), and Windows aficiona-
dos (.NET) but Rails has become very popular and has influenced development
of other server-side frameworks.

The design decisions that went into the first version of Rails anchored a vir-

36 CHAPTER 5. WHY RAILS?

tuous circle that led to Rails’s growth. Within the first year, Rails caught the
attention of prominent software engineers, notably Martin Fowler and Dave
Thomas (proponents of agile software development methodologies). Rails is
well-matched to the practices of agile software development, particular in its
emphasis on software testing and “convention over configuration.” The interest
and advocacy of opinion leaders from the agile camp led to greater visibility in
the wider open source community, culminating in a keynote lecture by Heine-
meier Hansson at the 2005 O’Reilly Open Source Convention. Because Rails
was adopted by software engineers who are influencers and trend setters, it is
often said that Rails is favored by “the cool kids.” If that is so, it is largely be-
cause Rails is well-suited to software engineering practices that are promoted
by thought leaders like Fowler and Thomas.

Rails Guiding Principles

The popularity of Rails is an outgrowth of the Rails “philosophy” or guiding
principles. If you read blogs by Rails developers, you’ll often see references to
these principles. Understanding these principles will help you make sense of
Rails or, at least, some of the debates on developer blogs.

Rails is Opinionated

In the mid-1990s, web applications were often written in Perl, a programming
language that promised, “There’s more than one way to do it.” Perl is a prime
example of “non-opinionated” software; there’s no “right way” or “best way”
to solve programming problems in Perl. Famously, Perl’s documentation states,
“In general, [Perl’s built-in functions] do what you want, unless you want con-
sistency.”

In contrast, Rails is said to be “opinionated.” There is a “Rails way” for many
of the problems that must be solved by a web application developer. If you
follow the Rails conventions, you’ll have fewer decisions to make and you’ll

http://en.wikipedia.org/wiki/Agile_software_development
http://conferences.oreillynet.com/cs/os2005/view/e_sess/7167
http://conferences.oreillynet.com/cs/os2005/view/e_sess/7167
http://perldoc.perl.org/perlfunc.html

RAILS GUIDING PRINCIPLES 37

find more of what you need is already built. The benefit is faster development,
improved collaboration, and easier maintenance.

Rails is Omakase

Omakase is a Japanese phrase that means “I’ll leave it to you.” Customers at
sushi restaurants can order omakase, entrusting the chef to make a pleasing
selection instead of making their own à la carte choices. In a famous essay
Heinemeier Hansson declared Rails is Omakase, and said, “A team of chefs
picked out the ingredients, designed the APIs, and arranged the order of con-
sumption on your behalf according to their idea of what would make for a tasty
full-stack framework. . . . When we, or in some cases I — as the head chef of
the omakase experience that is Rails — decide to include a dish, it’s usually
based on our distilled tastes and preferences. I’ve worked in this establishment
for a decade. I’ve poured well in the excess of ten thousand hours into Rails.
This doesn’t make my tastes right for you, but it certainly means that they’re
well formed.”

Understanding that Rails is omakase means accepting that many of the opin-
ions enshrined in the Rails API are the decisions of a Benevolent Dictator for
Life, informed by discussion with other developers who have made significant
contributions to the Rails code base. For the most part, Heinemeier Hansson’s
“opinions” will serve you well.

Convention Over Configuration

“Convention over configuration” is an example of Rails as “opinionated soft-
ware.” It is an extension of the concept of a default, a setting or value auto-
matically assigned without user intervention. Some software systems, notably
Java web application frameworks, need multiple configuration files, each with
many settings. For example, a configuration file might specify that a database
table named “sales” corresponds to a class named “Sales.” The configuration

http://david.heinemeierhansson.com/2012/rails-is-omakase.html
http://en.wikipedia.org/wiki/Benevolent_Dictator_for_Life
http://en.wikipedia.org/wiki/Benevolent_Dictator_for_Life

38 CHAPTER 5. WHY RAILS?

file permits flexibility (a developer can easily change the setting if the table
is named “items_sold”). Instead of relying on extensive configuration files,
Rails makes assumptions. By convention, if you create a model object in Rails
named “User,” it will save data to a database table named “users” without any
configuration required. Rails will also assume the table name is plural if the
class name is singular.

“Convention over configuration” means you’ll be productive. You won’t spend
time setting up configuration files. You’ll spend less time thinking about where
things go and what names to assign. And, because other developers have
learned the same conventions, it is easier to collaborate.

Don’t Repeat Yourself

Known by the acronym DRY, “Don’t Repeat Yourself” is a principle of soft-
ware development formulated by Andy Hunt and Dave Thomas and widely
advocated among Rails developers. In its simplest form, it is an admonition to
avoid duplication. When code is duplicated, an application becomes more com-
plex, making it more difficult to maintain and more vulnerable to unintended
behavior (bugs). The DRY principle can be extended to development processes
as well as code. For example, manual testing is repetititive; automated testing
is DRY. Software design patterns that introduce abstraction or indirection can
make code more DRY; for example, by eliminating repetitive if-then logic.

Code reuse is a fundamental technique in software development. It existed
long before Andy Hunt and Dave Thomas promoted the DRY principle. Rails
takes advantage of Ruby’s metaprogramming features to not just reuse code
but eliminate code where possible. With a knowledge of Rails conventions, it’s
possible to create entire simple web applications with only a few lines of code.

WHERE RAILS GETS COMPLICATED 39

Where Rails Gets Complicated

It helps to understand the guiding principles of Rails. But it’s even more helpful
to know how (and why) Rails is complicated by departures from the guiding
principles.

When Rails has No Opinion

As you gain experience with Rails, you may encounter areas where Rails doesn’t
state an opinion. For example, for years there was no “official” approach to
queueing background jobs. (Tasks that take time, such as contacting a remote
server, are best handled as “background jobs” that won’t delay display of a web
page.) Fortunately, by 2015, the Rails core maintainers released the ActiveJob
feature which implemented queueing. Much of the lively debate that drives de-
velopment of new versions of Rails is focused on thrashing out the “opinions”
that eventually will be enshrined in the Rails API.

Omakase But Substitutions Are Allowed

Implicit in the notion of “Rails is omakase” is an understanding that “substitu-
tions are allowed.” Most of Heinemeier Hansson’s preferences are accepted by
all Rails developers. However, many experienced developers substitute items
on the menu at the Rails café. This has led to the notion that Rails has Two De-
fault Stacks, as described in an essay by Steve Klabnik. Professional developers
often substitute an alternative testing framework or use a different syntax for
creating page views than the “official” version chosen by Heinemeier Hans-
son. This complicates learning because introductory texts often focus on the
omakase selections but you’ll encounter alternatives in blog posts and example
code.

http://words.steveklabnik.com/rails-has-two-default-stacks
http://words.steveklabnik.com/rails-has-two-default-stacks

40 CHAPTER 5. WHY RAILS?

Conventions or Magic?

One of the joys of programming is knowing that everything that happens in
an application is explained by the code. If you know where to look, you’ll
see the source of any behavior. For a skilled programmer, “convention over
configuration” adds obscurity. Without a configuration file, there is no obvious
code that reveals that data from a class named “Person” is saved to a datatable
named “people.” As a beginner, you’ll simply accept the magic and not con-
found yourself trying to find how it works. It’s not always easy to learn the
conventions. For example, you may have a User object and a “users” datatable.
Rails will also expect you to create a “controller object.” Should it be named
“UserController” (singular) or “UsersController” (plural)? You’ll only know
if you let Rails generate the code or you pay close attention to tutorials and
example code.

DRY to Obscurity

The risk that “convention over configuration” leads to obscurity is compounded
by the “Don’t Repeat Yourself” principle. To avoid repetitive code, Rails often
will offer default behavior that looks like magic because the underlying imple-
mentation is hidden in the depths of the Rails code library. You can implement
a simple web application with only a few lines of custom code but you may
wonder where all the behavior comes from. This can be frustrating when, as
a beginner, you attempt to customize your application to do more than what’s
shown in simple tutorials.

In the next chapter, we’ll consider some of the challenges that make it difficult
to learn and use Rails.

Chapter 6

Rails Challenges

Rails is popular. Rails is powerful. But Rails isn’t easy to learn.

You may have heard of a psychological phenomenon called “resistance.” When
we struggle with something new, or must adapt to the unfamiliar, we resist. We
get discouraged. We complain. Sometimes we feel we should quit.

This chapter is here to help with your resistance.

Its purpose is to acknowledge that, yes, Rails can be difficult.

Tens of thousands of people are successfully using Rails. I’ll hazard a guess
that none are significantly smarter, more motivated, or a better student than
you. Perhaps some of them had more time to study or better access to men-
tors, but these factors simply accelerate the speed of learning Rails. If you get
discouraged, or think Rails is too hard, recognize that you are encountering
your own resistance, not any genuine limitation. Take a break, set aside your
learning materials, and come back when your natural curiosity and eagerness
has returned.

Sometimes resistance attaches to imaginary problems (like “I’m not smart enough”).
Just as often, resistance attaches to real problems, but magnifies them into in-
surmountable obstacles (“Rails is impossible to use on Windows!”). The best
way to overcome these obstacles is to acknowledge the resistance, investigate

41

42 CHAPTER 6. RAILS CHALLENGES

the obstacle, and seek support from peers.

This chapter describes some of things that make Rails difficult.

These Rails challenges are obstacles, but other people overcame them. You
can, too.

A List of Challenges

This list is incomplete. If you’ve encountered a Rails challenge that isn’t listed
here, email me at daniel@danielkehoe.com and I will add your suggestion to
the next revision of the book.

It is difficult to install Ruby.

The installation process for Ruby on Rails is more difficult than downloading
and installing any consumer software applications. You are setting up a devel-
opment environment and you need system software as well as Ruby. Depend-
ing on what you’ve done before, you may have altered your system, introducing
potentials for conflicts. Book Two provides links to good installation guides in
the “Get Started” chapter. But installation instructions can’t accommodate the
specific configuration of your computer. Sometimes you just have to look for
someone to help. You can also use a hosted development environment, such as
Cloud9.

Rails is a nightmare on Windows.

Windows is very popular, so why is it difficult to develop with Rails on Win-
dows? It seems the Rails community has a bias against Windows. It does, and
there’s a reason. Rails is an open source project. Most open source develop-
ers use Unix-based system tools. It is difficult and time-consuming to convert
Unix-based system tools to the Microsoft Windows operating system. Open

mailto:daniel@danielkehoe.com
https://c9.io/

A LIST OF CHALLENGES 43

source developers prefer to spend their time maintaining and improving their
Unix-based projects. And expert Windows developers are seldom interested in
porting Unix-based system tools to Windows. So system utilities such as RVM
are not available for Windows. And developers who create gems are seldom
interested in spending time to solve the problems that arise when code has to
be adapted for the idiosyncrasies of the Windows platform. This situation is
not going to change, so you have to make a choice. Stay with Windows or get
comfortable with Unix-based systems.

Why do I have to learn Git? It is difficult.

Real software development requires version control and Git is the standard tool
for Rails developers. If all you do is build applications as a classroom exercise,
you don’t need to learn Git. You can skip all the parts of the book that mention
Git. But sooner or later, if you start doing real projects, you’ll need Git. Simple
Git commands are not difficult to learn. When you’ve developed your skills and
confidence you can learn the more advanced Git functions, such as branching.

Why worry about versions?

For simple projects you don’t need version management. My books introduce
version management and prepare you to handle version conflicts. As you tackle
more complex projects, and as new versions of Rails are released, you’ll face
version issues and version management will be helpful.

Do I really need to learn about testing?

For student projects, no, you don’t need to learn about testing. But as soon as
money or reputation is at stake on a project, you’ll need to begin using test-
driven development. Book Two introduces TDD but you’ll need intermediate-
level tutorials to develop proficiency. Once you’ve grasped the basics, testing

44 CHAPTER 6. RAILS CHALLENGES

will become easy, and it actually is fun and satisfying.

Rails error reporting is cryptic.

Actually, Rails error reporting is quite good. Stack traces are detailed and error
messages are descriptive. Beginners have a problem because the stack traces
and error messages provide a technical analysis of a problem in terms that an
experienced developer can understand. If error reporting was “simplified” it
might not be as intimidating but it would not as accurate. It’s up to you to gain
enough knowledge to understand the error messages. Finally, the error report-
ing mechanism can point you to the line in your code that triggers a problem,
but it can’t know what you trying to do, or describe the error in anything but
technical terms.

There is too much magic.

The Rails “convention over configuration” principle leads to obscurity. Default
behavior often looks like magic because the underlying implementation is hid-
den in the depths of the Rails code library. If you like to know how things work,
this can be frustrating. You really have only two choices when you encounter
Rails magic. You can take time to dig into the source code. If you do so, you’ll
encounter frustration as you encounter complex and sophisticated code, but you
may also improve your understanding and skill as a Ruby programmer. Or you
can take on faith that “it just works.” Often, you just need to use the convention
several times in different projects to get comfortable with the magic and stop
worrying that you don’t fully understand it.

It is difficult to grasp MVC and REST.

Even if you learn that the acronyms mean model-view-controller and represen-
tational state transfer, MVC and REST are abstract concepts. If you simply

A LIST OF CHALLENGES 45

follow a tutorial, the author will show you how to build an application that uses
MVC or REST, but you won’t see any alternative, or understand why MVC
or REST are best practices. When it is time to build your own application, if
you don’t understand the importance of separation of concerns you won’t be
sure how to structure your application. Understanding software architecture
requires abstract reasoning, imagination, and experience, which takes time. It
is difficult to grasp but approach it with curiosity, seek explanations, and you’ll
grasp it soon enough.

Rails contains lots of things I don’t understand.

If you look at the Rails directory structure, you’ll see many files and folders. If
you look at the Rails API, or pick up a Ruby tutorial, you’ll also see code that
is unfamiliar. Book Two describes some of what you see. As you build more
applications, you will gain proficiency and master more of Rails and Ruby. Yet
even as you gain mastery of Rails, there will be aspects that remain unfamiliar.
Don’t let the sheer complexity stop you. The truth is, you don’t have to know
“all” of Rails or Ruby to build web applications.

There is too much to learn.

Very true. To be a full-stack web developer you need to know HTML, JavaScript,
CSS, Ruby, testing, databases, and much, much more. You might think that de-
velopers who started ten years ago have an advantage because there wasn’t as
much to learn when they started. But today there are many more high-quality
tutorials and educational programs to accelerate your learning. And resources
like Google and Stack Overflow have many more answers to questions. As
the knowledge domain has grown, so have the learning resources. You don’t
have to learn everything. Get a foundation in the basics and then dive deep as
a specialist in an area that appeals to you.

46 CHAPTER 6. RAILS CHALLENGES

It is difficult to find up-to-date advice.

Rails has been around since 2004 with major new versions released every two
years. Chances are, answers to questions you find on Stack Overflow or Google
were written for an older version of Rails. There is no easy way to determine
if the answer is out of date. A particular aspect of Rails may have changed—or
not. Even worse, the answer may work, but there may be a better way that
reflects current best practices. To filter the outdated in Google, use the “Search
Tools” options for specifying a timeframe. Look closely at the date of a blog
posting or Stack Overflow answer. Try to find a newer answer. Usually, if
there are a series of answers and things have changed, you’ll see the current
best answer. If you’re uncertain, don’t be shy about posting your question to
Stack Overflow. More importantly, make it your business to keep up with the
community, reading Peter Cooper’s Ruby Weekly email newsletter or his daily
RubyFlow site.

It is difficult to know what gems to use.

There are so many gems available for Rails. Some add useful features, like
tagging or a mailing list API. Some are basic, such as gems for a database or
front-end framework. Even among basic gems, Rails offers choices. Which are
best? The Ruby Toolbox can help, but mostly you will find guidance from look-
ing at example projects and noticing what other developers are using. There’s
wisdom in the crowd.

If you’ve subscribed to the video series or purchased the advanced tutorials,
this three minute video explains:

• How to Find Rubygems

http://rubyweekly.com/
http://www.rubyflow.com/
http://ruby-toolbox.com/
https://tutorials.railsapps.org/videos/4

A LIST OF CHALLENGES 47

Rails changes too often.

If you look at the Ruby on Rails Release History you’ll see there is a new
major release approximately every 1.5 years. Each major release is well tested
and relatively free of bugs. But new features or new approaches often require
rewrites of older applications. Commercial software products often make a
priority of keeping the API consistent over time. That’s not Rails. Rails is an
open source project and the core team embraces innovation. The maintainers
expect that you’ll keep up with changes.

It is difficult to transition from tutorials to building real appli-
cations.

Copying and pasting from tutorials is a good way to begin learning Rails. But
you’ll only become a skilled Rails developer when you build something that is
not shown in a tutorial. The first few hours (or days) when you start building a
custom application can be very difficult. Focus on the basics that are described
in this book. Start with user stories. Build pieces that you know how to do.
Look for code samples on blogs or GitHub or Stack Overflow. Try “spikes,”
little experiments that test ideas for implementation. Seek advice from peers or
mentors. At first it will be slow going. But you will pick up momentum. The
chapter, “Crossing the Chasm,” will provide specific strategies to help.

I’m not sure where the code goes.

If you follow tutorials, you’ll learn “where the code goes” with the model–
view–controller design pattern. With a sense of the request-response cycle,
RESTful actions in the controller, and a few guidelines such as “skinny con-
troller, fat model” you’ll be able to build intermediate-level Rails applications.
Front-end code, particularly JavaScript, can be difficult because not a lot has
been published about Rails best practices. In particular, the Rails asset pipeline
can be confusing for anyone who has done front-end development without

http://railsapps.github.io/rails-release-history.html

48 CHAPTER 6. RAILS CHALLENGES

Rails. If you don’t know what you’re supposed to do, do whatever works,
then look for someone who can help you by providing a code review.

People like me don’t go into programming.

Until recently in most countries, most Rails developers have been young men
with an engineering background. For people who don’t fit the stereotypical
profile, it can be hard to find role models or peers who demonstrate that Rails
is something everyone can learn. The challenge can be subtle, as when you
have the feeling that maybe if you were different you’d find it easier to make
progress. Or the challenge can be overt, when behavior of fellow students or
co-workers is disturbing or hurtful (often they don’t even know!). Lack of di-
versity, and the cluelessness that accompanies it, is unfortunate in the Rails
community. But many people are working to make the community more wel-
coming and inclusive. Organizations such as Rails Girls and Railsbridge are
creating more diversity in the community. You may find support from peers
there to affirm that you, too, are entitled to knowledge and success.

These are some of the challenges you will face in learning and using Rails.
Next, we will look at how to get help.

http://railsgirls.com/
http://railsbridge.org/

Chapter 7

Get Help When You Need It

Sometimes I’m asked, “Where’s the Rails manual?” There isn’t one. No single
document tells you how to use Rails. Instead, there’s a wealth of documentation
that describes various aspects of Rails.

Let’s consider where to look for help when you are working on your own Rails
projects.

Getting Help With Rails

If you’ve subscribed to the video series or purchased the advanced tutorials,
this six minute video gives some guidance:

• Get Help with Rails

What will you do when you get stuck?

“Google it,” of course. But here’s a trick to keep in mind. Google has options
under “Search tools” to show only recent results from the past year. Use it to
filter out stale advice that pertains only to older versions of Rails.

49

https://tutorials.railsapps.org/videos/5

50 CHAPTER 7. GET HELP WHEN YOU NEED IT

Stack Overflow is as important as Google for finding answers to programming
problems. Stack Overflow answers are often included in Google search re-
sults, but you can go directly to Stack Overflow to search for answers to your
questions. Like Google, answers from Stack Overflow are helpful if you check
carefully to make sure the answers are recent. Also be sure to compare answers
to similar questions; the most popular answer is not always the correct answer
to your particular problem.

Requests for advice (especially anything that provokes opinions) are often re-
jected on Stack Overflow. Instead, try Reddit for advice or recommendations.
You’ll find discussion forums (“subreddits”) devoted to Rails and Ruby. You
can also visit the Quora question-and-answer site for topics devoted to Rails
and Ruby.

References

Here are suggestions for the most important references.

If you feel overwhelmed by all the links, remember that you can use Book Two
to build the tutorial application without any additional resources. Right now,
it’s important to know additional help is available when you need it.

RailsGuides

The Rails Guides are Rails’s official documentation, written for intermediate-
level developers who already have experience writing web applications. The
Rails Guides are an excellent reference if you want to check the correct syntax
for Rails code. You’ll be able to use the Rails Guides after completing this
tutorial.

http://stackoverflow.com/questions/tagged/ruby-on-rails
http://www.reddit.com/r/rails
http://www.reddit.com/r/ruby/
http://www.quora.com/
http://www.quora.com/Ruby-on-Rails-web-framework
http://www.quora.com/Ruby-programming-language
http://guides.rubyonrails.org/

MEETUPS, HACK NIGHTS, AND WORKSHOPS 51

Cheatsheets

Tobias Pfeiffer has created a useful Rails Beginner Cheat Sheet that provides a
good overview of Rails syntax and commands.

Even better than a cheatsheet, for Mac users, is an application named Dash
that offers fingertip access to reference documentation for Ruby, Rails, HTML,
CSS, JavaScript, and many other languages and frameworks.

API Documentation

The API documentation for Ruby and Rails shows every class and method.
These are extremely technical documents (the only thing more technical is
reading the source code itself). The documents offer very little help for be-
ginners, as each class and method is considered in isolation, but there are times
when checking the API documentation is the only way to know for certain how
something works.

• Rails Documentation - official API docs

• apidock.com/rails - Rails API docs with usage notes

• apidock.com/ruby - Ruby API docs with usage notes

I recommend Dash as a tool to look up classes, modules, and methods in Ruby
and Rails. Dash is a macOS app; use Zeal on Linux. Dash and Zeal run offline
(they don’t need an Internet connection) so you can use them anywhere.

Meetups, Hack Nights, and Workshops

I’d like to urge you to find ways you can work with others who are learning
Rails. Peer support is really important when you face a challenge and want to
overcome obstacles.

http://pragtob.github.io/rails-beginner-cheatsheet/index.html
http://kapeli.com/dash
http://api.rubyonrails.org/
http://apidock.com/rails
http://apidock.com/ruby
http://kapeli.com/dash
http://zealdocs.org/

52 CHAPTER 7. GET HELP WHEN YOU NEED IT

Most large urban areas have meetups or user group meetings for Rails devel-
opers. Try Meetup.com or google “ruby rails (my city)”. The community of
Rails developers is friendly and eager to help beginners. If you are near a
Rails meetup, it is really worthwhile to connect to other developers for help
and support. You may find a group that meets weekly for beginners who study
together.

Local user groups often sponsor hack nights or hackathons which can be evening
or weekend collaborative coding sessions. You don’t have to be an expert. Be-
ginners are welcome. You can bring your own project which can be as simple
as completing a tutorial. You will likely find a study partner at your level or a
mentor to help you learn.

If you are a woman learning Rails, look for one of the free workshops from
RailsBridge or Rails Girls. These are not exclusively for women; everyone
considered a “minority” in the tech professions is encouraged to participate;
and men are included when invited by a woman colleague or friend.

Pair Programming

Learning to code is challenging, especially if you do it alone. Make it social
and you’ll learn faster and have more fun.

There’s a popular trend in the workplace for programmers to work side-by-side
on the same code, sharing a keyboard and screen. It’s effective, both to increase
productivity and to share knowledge, and many coders love it. When program-
mers are not in the same office, they share a screen remotely and communicate
with video chat.

Look for opportunities to pair program. It’s the best way to learn to code,
even if your pairing partner is only another beginner. Learn more about pair
programming on the site pairprogramwith.me and find a pairing partner at co-
dermatch.me or letspair.net.

Remote pair programming requires tools for screen sharing and video chat.

http://www.meetup.com/
http://en.wikipedia.org/wiki/Hackathon
http://railsbridge.org/
http://railsgirls.com/
http://www.pairprogramwith.me/
http://www.codermatch.me/
http://www.codermatch.me/
http://www.letspair.net/

PAIRING WITH A MENTOR 53

Pairing sessions often use:

• Google+ Hangouts

• Screenhero

• Floobits

• Cloud9 IDE

More tools are emerging as remote pair programming becomes popular.

Pairing With a Mentor

By far, the best way to learn is to have a mentor at your side as you undertake
a project. That is an opportunity that is seldom available, unless you’ve been
hired to be part of a team in a company that encourages pair programming.

You can try RailsMentors, a network of volunteer mentors offering free help.

If you can pay for help, find a mentor using HackHands or AirPair. Market
rates are expensive for a student, obviously, but if you are learning on the job
or building an application for your own business, connecting online with a
mentor might be a godsend.

AirPair connects developers for real-time help using video chat and screen shar-
ing. Experts set their own rate and the site matches you according to your bud-
get. Expect to pay market rates for consulting ranging from USD $40 per hour
to $150 per hour or more.

HackHands promises to instantly connect you with a qualified expert at a cost
of one dollar per minute for mentorship using video chat and screen sharing.

http://www.google.com/+/learnmore/hangouts/
http://screenhero.com/
https://floobits.com/
https://c9.io/
http://www.railsmentors.org/
http://hackhands.com/
http://www.airpair.com/
http://www.airpair.com/
http://hackhands.com/

54 CHAPTER 7. GET HELP WHEN YOU NEED IT

Code Review

Code review is an essential part of the development process. There’s always
more than one way to implement a feature, and some ways are better than
others, but you may not know it unless you ask someone to look at your code.
When you pair with a mentor, you get the benefit of code review. But even if
you don’t have a mentor, you can get code review online. StackExchange, the
parent of StackOverflow, has a free site for code review:

• codereview.stackexchange.com

Expert code review will accelerate your learning faster than anything else.

Knowing where to go for help is important; it is just as important to stay cur-
rent.

Staying Up-to-Date

Rails changes frequently and its community is very active. Changes to Rails,
expert blog articles, and new gems can impact your projects, even if you don’t
work full-time as a Rails developer. Consequently, I urge you to stay up-to-date
with news from the community.

I suggest signing up for two weekly email newsletters:

• Ruby Weekly

• Green Ruby News

Another weekly email newsletter is more technical, and focused on code arriv-
ing in the next version of Rails:

• This Week in Rails

http://codereview.stackexchange.com/
http://rubyweekly.com/
http://greenruby.org/
https://rails-weekly.ongoodbits.com/

STAYING UP-TO-DATE 55

For daily news about Rails, check Peter Cooper’s RubyFlow site which lists
new blog posts from Rails developers each day.

Also take a look at this list of top blogs for Rails developers:

• 45 Ruby Blogs

If you like podcasts, check out Ruby Rogues and Envy Labs’s Ruby5.

Finally, you can follow @rails_apps on Twitter for news about the RailsApps
project.

http://www.rubyflow.com/
http://blog.honeypot.io/45-ruby-blogs/
http://rubyrogues.com/
http://ruby5.envylabs.com/
http://twitter.com/rails_apps

56 CHAPTER 7. GET HELP WHEN YOU NEED IT

Chapter 8

Plan Your Product

Tutorials from other authors focus only on coding. But Rails developers do
more than code. Software development is a process that begins with planning
and ends with analysis and review. Coding, testing, and deployment is at the
core but you’ll need to learn about the entire process to succeed professionally.
That’s why we look at product planning and project management.

For this beginning tutorial, we’ll introduce concepts about product planning
and project management that you will encounter as a Rails developer.

Product Owner

On your project, who is the product owner?

The product owner is the advocate for the customer, making sure that the team
creates value for the users.

If you are a solo operator, you are the one who will decide what features and
functionality will be included in your application. But if you’re part of a team,
either in a startup, as a consultant, or in a corporate setting, it may not be clear
who has responsibility for looking at the application from the point of view of
the application user. Someone must decide which features and functionality

57

58 CHAPTER 8. PLAN YOUR PRODUCT

are essential and which must be left out. We call this managing scope and
combating feature creep.

It’s important to assign a product owner. Without a product owner in charge,
tasks remain vague and developers have difficulty making progress.

In large organizations, a product owner may be a product manager or a project
manager. A product owner usually is not a management executive (though
there will likely be an executive sponsor). Everyone on the team — including
management, developers, and stakeholders — should agree to designate a prod-
uct owner and give that person authority to define features and requirements.

User Stories

A product owner’s principal tool for product planning is the user story.

In the past, when software engineering primarily served government or large
corporations, product planning started with requirements gathering defined as
use cases, and culminated in a requirements specification. User stories are
a faster, more flexible approach to product planning that originated with an
approach called Agile software development.

User stories are a way to discuss and describe the requirements for a software
application. The process of writing user stories helps a product owner identify
all the features that are needed for an application. Breaking down the applica-
tion’s functionality into discrete user stories helps organize the work and track
progress toward completion.

User stories are often expressed in the following format:

As a
I want
In order to

Here is an example:

http://en.wikipedia.org/wiki/Product_management
http://en.wikipedia.org/wiki/Project_manager
http://en.wikipedia.org/wiki/Project_manager
http://en.wikipedia.org/wiki/Executive_sponsor
http://en.wikipedia.org/wiki/Requirements_gathering
http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/Software_Requirements_Specification
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/User_story

WIREFRAMES AND MOCKUPS 59

Join Mailing List
As a visitor to the website
I want to join a mailing list
In order to receive news and announcements

A typical application has dozens of user stories, from basic sign-in require-
ments to the particular functionality that makes the application unique.

You don’t need special software to write user stories. Just use index cards or a
Word document. In the next chapter, we’ll see how you can enter user stories
as tasks in a to-do list. Here’s the format:

Figure 8.1: A user story.

Just like Rails provides a structure for building a web application, user stories
provide a structure for organizing your product plan.

Wireframes and Mockups

Often, before writing user stories, a product owner will make rough sketches
of various web pages. Sketching is a phase where you try out ideas to clarify
your vision for the application. Sketching can lead to a wireframe or a mockup.
These terms are often used interchangeably but there are differences in mean-
ing.

60 CHAPTER 8. PLAN YOUR PRODUCT

A wireframe is a drawing showing all functional elements of a web page. It
should not depict a proposed graphic design for a website, rather it should be a
diagram of a web page, without color or graphics.

A mockup adds graphic design to a wireframe; including branding devices,
color, and placeholder content. A mockup gives an impression of the website’s
“personality” as well as proposed functionality.

One of the most popular tools for creating wireframes is Balsamiq Mockups
(despite the name, it produces wireframes, not mockups). There are dozens of
others listed in the article Rails and Product Planning.

As a product owner, writing user stories or sketching wireframes will help you
refine product requirements. Some people like a visual approach with wire-
frames; others prefer words and narrative. Either approach will work; both are
good.

Graphic Design

Very few people have skills as both a visual designer and a programmer. The
tools are different; graphic designers typically use Adobe Photoshop, though
web-savvy designers often create designs directly in HTML and CSS, while
developers write code.

If you’re lucky, you will work with a skilled graphic designer as you build your
web application. If you are very lucky, you may work with someone who is
a user experience (UX) designer or interaction designer (IxD). Interaction de-
sign is a demanding, sophisticated discipline that requires the mindset of an
anthropologist and the eye of a visual artist to find not just the most pleas-
ing, but the most effective visual design for an application user interface. You
can find interaction designers discussing their concerns on the IxDA website,
including the differences between interaction design and UX design.

If you’re working with a graphic designer you might collaborate on a mood-
board or a design brief to define the look and feel of your application. If the

http://en.wikipedia.org/wiki/Website_wireframe
http://balsamiq.com/products/mockups/
http://railsapps.github.io/rails-product-planning.html
http://www.ixda.org/discussion
http://www.ixda.org/node/19039

SOFTWARE DEVELOPMENT PROCESS 61

designer works in Photoshop, you’ll face the challenge of converting design
layouts from Photoshop to HTML and CSS. There are service firms that do
this for a fee but obviously it’s easier to work with a designer who can imple-
ment a layout directly in HTML and CSS.

Rails can be particularly challenging when it comes to integrating graphic de-
sign with code. Rails uses a hybrid of HTML markup mixed with Ruby pro-
gramming code in its view files (depending on the stack you’ve selected, the
view files can use ERB, Haml, or other syntaxes for mixing HTML and Ruby).
Few designers are comfortable with Ruby code mixed with HTML so you may
end up doing integration yourself.

If you don’t have a skilled graphic designer available to help, you can use
Bootstrap or other front-end frameworks such as Zurb Foundation to quickly
add an attractive design to your application.

In a later chapter that covers HTML and CSS, you’ll learn about templates and
themes for Bootstrap that provide a beginning point for page design.

Software Development Process

Product planning is the initial phase of a larger software development process.
You can approach this casually, and start coding with curiosity and ambition,
finding your own best way to the end product, by trial and error. Most hobbyist
and student developers need no other approach.

When money or reputation is at stake, casual approaches to software develop-
ment are risky. Compared to other forms of engineering, software development
is peculiarly prone to failure. As recently as 2003, IBM stated, “Most software
projects fail. In fact, the Standish group reports that over 80% of projects are
unsuccessful either because they are over budget, late, missing function, or a
combination. Moreover, 30% of software projects are so poorly executed that
they are canceled before completion.”

Professional software developers, being intelligent and reflexive, and driven by

http://getbootstrap.com/
http://foundation.zurb.com/
http://www.ibm.com/developerworks/websphere/library/techarticles/0306_perks/perks2.html

62 CHAPTER 8. PLAN YOUR PRODUCT

a desire to become more efficient, or wanting to avoid the wrath of bosses and
clients, frequently look for ways to reduce risk and improve the software de-
velopment process. In recent years they’ve succeeded in improving the success
rate of software engineering, largely due to the adoption of software develop-
ment methodologies that improve the business process of producing software.

If you’re a hobbyist or casual programmer, you don’t need to learn about soft-
ware development methodologies.

If you are going to be held accountable for the success or failure of a project,
you should learn more about software development methodologies.

If you’re going to be interviewing for a job as a programmer, it pays to rec-
ognize some of the names of software development methodologies and ask
whether your employer has adopted a particular approach, especially if you’d
like to work for a company that prides itself on being well-organized and sup-
portive of staff development. Hiring managers may say, “we’ve synthesized
several methodologies,” which may mean they don’t have a good answer for
the question, or it may mean they are prepared to thoughtfully discuss the mer-
its of various approaches to software development. Managers who can discuss
software development methodologies are more likely to be concerned about the
welfare of their team.

Here are some software development methodologies you may hear about, with
some notable characteristics:

• waterfall process - an old and disparaged approach

• Agile software development - an iterative and incremental approach

• Scrum - known for “sprints” and daily standup meetings

• Extreme Programming (XP) - pair programming and test-driven devel-
opment

Agile, Scrum, and XP are all related, and often mixed in practice.

http://en.wikipedia.org/wiki/Business_process
http://en.wikipedia.org/wiki/Waterfall_model
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Scrum_(development)
http://en.wikipedia.org/wiki/Extreme_programming

BEHAVIOR-DRIVEN DEVELOPMENT 63

As you mature as a software developer, take time to think about the process of
building software and learn more about software development methodologies.

Behavior-Driven Development

There is one prominent software development approach that is important for
product planning. It is called Behavior-Driven Development (BDD), or some-
times, Behavior-Driven Design.

BDD takes user stories and turns them into detailed scenarios that are accom-
panied by tests.

Here’s a screenshot from a consultant’s web application that shows how a user
story can be extended from a “feature” to include detailed “scenarios.”

Rails developers turn these scenarios into tests using either a software tool
named Cucumber or RSpec to run automated test suites. Most developers write
scenarios using a simple text editor.

With automated tests, a product owner can determine if developers have suc-
ceeded in implementing the required features. This process is called accep-
tance testing. Automated tests also make it easy for developers to determine
if the application still works as they add features, fix bugs, or reorganize code.
This process is called regression testing.

On a small project like our tutorial application, you won’t use BDD. It’s easy
enough to manually test the features before you deploy your application.

For an introductory book, BDD is an advanced topic. But on a project where
money and reputation is at stake, BDD can be very important. Every time an
application is deployed, there’s a chance that something could be broken. Soft-
ware development is plagued with “fix one thing, accidentally break another”
as code is refactored or improved. Manual testing can’t be expected to reveal
every bug. That’s why automated testing, providing coverage of every signif-
icant user-facing feature, is the only way to know if you’ve deployed without
known bugs.

http://cukes.info/
http://rspec.info/

64 CHAPTER 8. PLAN YOUR PRODUCT

In Book Two, a “Testing” chapter will introduce you to the terminology and
concepts of automated testing. You won’t have to worry about testing when we
build the tutorial application, but afterward you’ll learn enough about testing to
be prepared for more advanced tutorials.

BEHAVIOR-DRIVEN DEVELOPMENT 65

Figure 8.2: Feature and scenario.

66 CHAPTER 8. PLAN YOUR PRODUCT

Chapter 9

Manage Your Project

How do you know you’re making progress? Are you taking care of everything
that needs to be done? These questions are at the center of project management.
Whether you are working alone or as part of a team, you need to define your
tasks and track progress toward your goal.

The previous chapter on product planning showed how user stories can be used
to break down an application into discrete features. User stories can be the basis
for a list of tasks.

To-Do List

You can track your tasks with a simple to-do list. Some entrepreneurs like the
discipline of the GTD system (Getting Things Done) for personal productivity
and time management. Our article on Rails and Project Management offers a
list of popular to-do list applications, either for personal task management or
team-oriented task management.

67

http://en.wikipedia.org/wiki/Getting_Things_Done
http://railsapps.github.io/rails-project-management.html

68 CHAPTER 9. MANAGE YOUR PROJECT

Kanban

Kanban is a method of managing projects that has been adapted from lean
manufacturing for use in software development. In Japanese, “Kan” means
visual, and “ban” means card or board.

Imagine putting a big whiteboard on your wall and creating columns for a series
of to-do lists. The columns, called swimlanes, are labelled: Backlog, Ready,
Coding, Testing, Done. Each swimlane contains index cards that describe a
user story or other task. To plan your work and track progress, you’ll move
the index cards across the board from column to column. To stay focused and
avoid becoming overwhelmed, you’ll only pick the most important user stories
or tasks from the backlog column and you’ll limit the number of items in each
column to what can be realistically accomplished in the time available. That’s
the essence of kanban as it is used for software development.

See the article on Rails and Project Management for a list of kanban web ap-
plications. Trello is particularly popular for task management.

Agile Methodologies

For a solo project or a small team, you’ll do fine with a simple to-do list or
(even better) a kanban web application for managing your software develop-
ment process.

If you’ve got enough people to need to hire a project manager, you should
look at project management software that supports teams using Agile software
development methodologies. Pivotal Tracker is the best known tool but there
are many other agile tools.

Learn more about Agile if you’re going to hire developers for a startup or if you
are going to work for an established company. In most successful companies,
Agile processes have replaced the much-maligned waterfall process that was
once the norm for software development.

http://en.wikipedia.org/wiki/Kanban_(development)
http://en.wikipedia.org/wiki/Lean_manufacturing
http://en.wikipedia.org/wiki/Lean_manufacturing
http://en.wikipedia.org/wiki/Swim_lane
http://railsapps.github.io/rails-project-management.html
https://trello.com/
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Agile_software_development
http://www.pivotaltracker.com/
http://agilescout.com/best-agile-scrum-tools/
http://en.wikipedia.org/wiki/Waterfall_model

Chapter 10

Mac, Linux, or Windows

This is a book for every beginner, so I’ll explain how we use a text editor and
terminal application for development. First, though, let’s ask, “macOS, Linux,
or Windows?”

Your Computer

You can develop web applications with Rails on computers running Mac OS
X, Linux, or Microsoft Windows operating systems. Most Rails developers use
macOS or Linux because the underlying Unix operating system has long been
the basis for open source programming.

Later in this chapter, I’ll give links to installation instructions for macOS and
Linux.

For Windows users, I have to say, installing Rails on Windows is frustrating
and painful. Readers and workshop students often tell me that they’ve given
up on learning Rails because installation of Ruby on Windows is difficult and
introduces bugs or creates configuration issues. Even when you succeed in
getting Rails to run on Windows, you will encounter gems you cannot install.
For these reasons, I urge you to use Cloud9, a browser-based development

69

70 CHAPTER 10. MAC, LINUX, OR WINDOWS

environment, on your Windows laptop.

Hosted Computing

If you are using Windows, or have difficulty installing Ruby on your computer,
try using Cloud9.

Cloud9 provides a hosted development environment. That means you set up
an account and then access a remote computer from your web browser. The
Cloud9 service is free for ordinary use. There is no credit card required to set
up an account. You’ll only be charged if you add extra computer memory or
disk space (which you don’t need for ordinary Rails development).

The Cloud9 service gives you everything you need for Rails development, in-
cluding a Unix shell with Ruby pre-installed, plus a browser-based file man-
ager and text editor. Any device that runs a web browser will give you access
to Cloud9, including a tablet or smartphone, though you need a broadband con-
nection, a sizable screen, and a keyboard to be productive.

Installing Ruby

Your first challenge in learning Rails is installing Ruby on your computer.

Frankly, this can be the most difficult step in learning Rails because no tutorial
can sort out the specific configuration of your computer. Get over this hump
and everything else becomes easy.

The focus of this book is the background you need to understand Rails. In
Book Two, you’ll build a real-world Rails application. Before you can build
the application, you’ll need to install the latest versions of the Ruby language
and the Rails gem. You can get started now, with the links provided below, or
you can wait until you have started reading Book Two.

You’ll spend at least an hour installing Ruby and Rails, so defer the task until

https://c9.io/

INSTALLING RUBY 71

you have sufficient time at your computer.

MacOS

See this article for macOS installation instructions:

Install Ruby on Rails - macOS

Ubuntu Linux

See this article for Ubuntu installation instructions:

Install Ruby on Rails - Ubuntu

Hosted Computing

Cloud9 is a browser-based development environment. Cloud9 is free for small
projects. If you have a fast broadband connection to the Internet, this is your
best choice for developing Rails on Windows. And it is a good option if you
have any trouble installing Ruby on Mac or Linux because the Cloud9 hosted
environment provides everything you need, including a Unix shell with Ruby
and RVM pre-installed, plus a browser-based file manager and text editor. Us-
ing a hosted development environment is unconventional but leading develop-
ers do so and it may be the wave of the future.

See this article for Cloud9 installation instructions:

Install Ruby on Rails - Cloud9

The article shows how to get started with Cloud9.

http://railsapps.github.io/installrubyonrails-mac.html
http://railsapps.github.io/installrubyonrails-ubuntu.html
https://c9.io/
http://railsapps.github.io/rubyonrails-cloud9.html

72 CHAPTER 10. MAC, LINUX, OR WINDOWS

Windows

Here are your choices for Windows:

• Use the Cloud9 hosted development environment

• Install the Railsbridge Virtual Machine

• Use RubyInstaller for Windows

Cloud9 is ideal if you have a fast Internet connection. If not, download the
Railsbridge Virtual Machine to create a virtual Linux computer with Ruby 2.2
and Rails 4.2 using Vagrant. Other tutorials may suggest using RailsInstaller,
but it will not provide an up-to-date version of Ruby or Rails. Also, RVM does
not run on Windows.

http://railsapps.github.io/rubyonrails-cloud9.html
https://github.com/railsbridge/railsbridge-virtual-machine
http://rubyinstaller.org/
http://www.vagrantup.com/
http://railsinstaller.org/

Chapter 11

Terminal Unix

You’ll need to use the Terminal application and Unix commands to develop
Rails applications.

If you’ve subscribed to the video series or purchased the advanced tutorials,
you can watch this four minute video:

• UNIX Commands Basics

Most people use a graphical user interface (GUI) to interact with their com-
puters, tablets, or phones. As a developer, instead of using the GUI, you’ll get
“under the hood” and work directly with the engine that controls your com-
puter, the operating system. This is what makes software programming look
intimidating to learners. You won’t use menus or buttons as you work. Instead,
you’ll type commands, line by line, into a window that looks like a computer
interface from the 1970s. In fact, the terminal, or console, is a direct legacy of
computers that were developed even earlier, in the 1960s. The terminal contin-
ues to be the fundamental tool of software development.

73

https://tutorials.railsapps.org/videos/2

74 CHAPTER 11. TERMINAL UNIX

The Terminal

The Terminal application or console gives us access to the Unix command line,
or shell.

We call the command line the shell because it is the outer layer of the operating
system’s internal mechanisms (which we call the kernel).

On macOS, you can use the Terminal application. Experienced developers
often upgrade to the more powerful iTerm2 application but you can start with
the installed Terminal application.

Look for the Terminal in the following places:

• MacOS: Applications > Utilities > Terminal

• Linux: Applications > Accessories > Terminal

• Windows: Taskbar Start Button > Command Prompt

On the Mac, search for the macOS Terminal application by pressing the Command-
Spacebar combination (which Apple calls “Spotlight Search”) and searching
for “Terminal.” The magnifying glass in the upper right corner of your screen
will also launch “Spotlight Search.” Or look in the Applications/Utilities/
folder for the Terminal application. You’ll need to click the name of the ap-
plication to launch the Terminal.

If you are using Linux then you likely know how to find the Terminal. Look
through the menu for your window manager for “Shell” or “Terminal.”

If you have your computer in front of you, launch your terminal application
now.

Try out the terminal application by entering a shell command.

http://en.wikipedia.org/wiki/Terminal.app
http://www.iterm2.com/#/section/home

UNIX COMMANDS EXPLAINED 75

$ whoami

Don’t type the $ character. We call it “the prompt.” The $ character is a cue that
you should enter a shell command. This is a longtime convention that indicates
you should enter a command in the terminal application or console.

The Unix shell command whoami returns your username.

$ whoami
danielkehoe

Instead, you might see:

command not found: $

which indicates you typed the $ character by mistake.

If you are new to programming, using a text editor and the shell will seem
primitive compared to the complexity and sophistication of Microsoft Word or
Photoshop. Software developers edit files with simple text editors and run pro-
grams in the shell. That’s all we do. We have to remember the commands we
need (or consult a cheatsheet) because there are no graphical menus or tool-
bars. Yet with nothing more than a text editor and the command line interface,
programmers have created everything that you use on your computer.

Unix Commands Explained

Unix commands seem cryptic at first. They are a shorthand that’s familiar to
experienced developers. If a Unix command is mysterious, you can look it up
with Google. But a better approach is to use the website:

76 CHAPTER 11. TERMINAL UNIX

• explainshell.com

Try it out. Visit the website and enter ls -1p. It’s a Unix command we’ll
use often in Book Two. The site will explain that the command “lists directory
contents, one file per line, with a slash appended to directories.” Now that you
know about explainshell.com, here’s no need to ever be mystified by a Unix
command.

Getting Fancy With the Prompt

If you watch experienced developers at work, you may see their consoles are
colorful, with lots of information shown in the prompt. You’ll see Git status,
current directory, and RVM gemset or Ruby version. Many developers replace
the standard Bash shell with the Z shell and Oh-my-zsh. You don’t have to
install the Z shell to get a fancy prompt; the Bash-it utility is easy to install
and gives you much of the functionality. A fancy prompt is helpful but requires
some Unix skills to install. Don’t worry about getting fancy now; you can try
it down the road.

Learning Unix Commands

You can follow the tutorial in Book Two without learning any Unix commands
in advance. Everything you need to know is given at each step. If time is short,
and you want to get started, you can jump into the Book Two tutorial without
learning Unix commands.

Eventually, you’ll realize you’ve learned quite a few basic Unix commands
without making an effort. But if you have time, you’ll feel more confident if
you spend some time watching a few videos or reading books that teach the
Unix command line basics.

http://explainshell.com/
http://en.wikipedia.org/wiki/Bash_(Unix_shell)
http://en.wikipedia.org/wiki/Z_shell
https://github.com/robbyrussell/oh-my-zsh
https://github.com/revans/bash-it

EXIT GRACEFULLY 77

If you haven’t used the computer’s command line interface (CLI) before, I rec-
ommend either Learn Enough Command Line to Be Dangerous or Zed Shaw’s
free Command Line Crash Course to gain confidence with Unix shell com-
mands.

If you don’t have time for the books recommended above, continue reading this
chapter for an introduction to command line basics.

Exit Gracefully

Before you learn about Unix commands, learn how to exit a command line
software program. It is the most important Unix skill you’ll need. If you don’t
learn it now, you’ll get stuck inside Unix programs and panic when you can’t
return to the command line prompt.

If you’re keeping a notebook for things you learn, write this down:

To EXIT FROM UNIX commands, type:
Control-c

If that doesn't work, try:
q
exit
Control-d
Control-z

If nothing works:
CLOSE THE TERMINAL WINDOW

To type Control-c, hold down the “Control” key while pressing the c key on
your keyboard.

There is no universal command to exit a Unix program. Any of these exit
techniques might work. None do harm to your computer, so if you get stuck,
try them all.

Software developers don’t usually say, “I’m running a Unix program.” Usually
they say, “I’ve launched a Unix process.” As you learn more about Unix, you’ll

http://www.learnenough.com/command-line-tutorial
https://learnpythonthehardway.org/book/appendix-a-cli/ex1.html

78 CHAPTER 11. TERMINAL UNIX

learn about the difference between Control-c, which “kills a process,” and
Control-z, which “suspends a process.” Right now, you don’t need to learn
about processes or what it means to kill or suspend them.

Structure of Unix Commands

Unix commands are cryptic if you’ve never seen them before. But there’s a
common pattern you’ll begin to recognize.

$ command -option argument

Notice there are spaces between each part of a Unix command.

Prompt

The $ character is the prompt. Sometimes you’ll see extra information before
the prompt:

My-MacBook:~ danielkehoe$

The prompt can be customized to provide useful information, such as the name
of the current folder or the current user. Some people change the $ character to
a different character, such as the > character.

Don’t be confused by a custom prompt and don’t worry about customizing
your prompt right now. Just remember that when you see a $ character on the
command line, the computer is waiting for you to enter a command.

STRUCTURE OF UNIX COMMANDS 79

Command

$ command -option argument

Each Unix command is a tiny software program that is already installed on your
computer. Each command does a few simple things, such as list the contents of
a folder or create an empty file. There are dozens of Unix commands but you
only need to learn a few to develop a Rails application.

Entering a command at the prompt and pressing “Return” (or “Enter”) will
result in either of two things. The computer will respond “command not found”
or it will run the command and return a result to the terminal window (“the
console”).

Sometimes a command is not found because it is not a built-in command and it
is not installed on your computer. More often, you’ve made an error in typing
the command. Unix doesn’t like capital letters (“uppercase”) so unless there is
a capital letter in a filename, you probably will need to type lowercase charac-
ters.

Option

$ command -option argument

Most Unix commands have a default response. Many commands have options
for different responses if you set an option “flag” or “switch.” You indicate an
option with a - character. Most people call that character a hyphen or dash.
You may hear programmers call it the “minus” character. Sometimes an option
is set with -, that you might describe as “dash dash” or “minus minus.” It’s
difficult to see on the typeset page of this book, but to get the - character you
type the “dash” character once. In this book, -, which appears as a slightly
longer dash, is actually typed as two dashes.

80 CHAPTER 11. TERMINAL UNIX

Two options are common among Unix commands: -help and -version
(with double dashes). There are also abbreviated versions: -h and -v (with
a single dash).

If you have a terminal window open on your computer, try typing:

$ man -v
man, version 1.6c

If I was coaching a beginner, I would say, “Type man space minus v. Don’t
forget the space and be sure to type ‘Enter.’”

The computer returns the version number of the current installed man Unix
command.

The Unix man command provides online documentation for every Unix com-
mand. Try:

$ man man
.
.
.

You’ll see the “man pages” that show exactly what to do with the man com-
mand.

You can type man followed by the name of a command to see the documenta-
tion for the command.

It is nice to know that every Unix command comes with complete instructions
for use. But try reading some man pages and you’ll understand why most
developers never look at man pages. Instead they use Google to search online
for instructions about how to use Unix commands. Man pages suffer from the
worst features of technical documentation. They are complete to the point of
obscurity, providing massive detail without highlighting the most common use
cases. You’re better off googling for examples of how to use Unix commands.

QUICK GUIDE TO UNIX COMMANDS 81

You’ll be stuck inside the man pages after you enter man man. Refer to your
notes about how to exit a Unix program. To get out of the man program, type q
to quit.

Argument

$ command -option argument

The term “argument” is borrowed from mathematics. Many Unix commands
like a good argument. It is information that will be processed by a Unix com-
mand. Often it is a filename, if the command will operate on a file or output to
a file.

For example, we can create a file with the Unix touch command or remove a
file with the Unix rm command:

$ touch myfile
$ rm myfile

In both cases, we must supply a filename as an argument.

Quick Guide to Unix Commands

As you learn Unix commands, it is a good idea to write notes for yourself or
prepare a personal cheatsheet. The act of taking notes will help you remember
the commands. Ultimately, the commands will become second nature through
sheer repetition as you develop Rails applications.

Here are the Unix commands you will use most often.

https://en.wikipedia.org/wiki/Argument_of_a_function

82 CHAPTER 11. TERMINAL UNIX

cd

Computers use file systems to control how data is stored and retrieved using
s storage system such as a hard drive. By separating the data into individual
pieces, and giving each piece a name, the information is easily separated and
identified. In offices in the 20th century, documents were grouped together as
files and kept in file folders in filing cabinets. Computers don’t really need to
organize information as files but early computer users apparently thought of
computer storage as electronic file cabinets.

In Unix, you are always expected to be somewhere in the filing cabinet. The
folders, or directories, are hierarchical, so a root folder contains multiple fold-
ers, which each contains many more folders and files. One set of nested folders
contains the programs and utilities which make up the operating system and
system utilities. Another set of nested folders contain folders for every user
who can sign in to use the computer.

Unix systems can have more than one user account. Each user is given a home
directory that contains the files needed by any software programs he or she will
use.

Unix expects you to always be somewhere in your computer’s file system. If
you get confused or lost, you can always return to your home directory. Unix
programmers like cryptic shortcuts that use unique keys from the keyboard. To
get to your home directory, you can enter the directory name, which is your
user name, or just type the “tilde” or “squiggle” character. On most keyboards,
it is the uppercase (shift key) character to the left of the numeral 1. Look at the
typeset character ~ in this book. It may look like a smudged dash, but if you
look closely, you’ll see the squiggle.

Use the cd (change directory) command to go to your home directory:

$ cd ~

The computer will not return a response to the terminal window, but you’ll be
positioned in your home directory. That means Unix commands will look for

QUICK GUIDE TO UNIX COMMANDS 83

files in your home directory or save files in your home directory unless you
specify another location.

pwd

Discover where you are by asking for the “present working directory.”

$ pwd
/Users/danielkehoe

The Unix pwd command will show the file path of your current directory.

It is easy to get confused and not be sure where you are. When you feel lost,
use the pwd command.

ls

Use the pwd command to figure out where you are. Then look around with the
ls command.

The ls command lists the files and folders that are contained in your present
working directory.

$ cd ~
$ ls
Applications Documents Movies Pictures
Downloads Music Public
Desktop Library

The response shows a list of files and folders. Your list will be different.

You can use options for many different lists of files and folders.

For example, you can see a list of files and folders in a single column with ls
-1:

84 CHAPTER 11. TERMINAL UNIX

$ ls -1
Applications
Desktop
Documents
Downloads
Library
Movies
Music
Pictures
Public

Using ls -1p, you can see a single column list with slash characters marking
the folders:

$ ls -1p
Applications/
Desktop/
Documents/
Downloads/
Library/
Movies/
Music/
Pictures/
Public/

It seems there are no files in my home directory. But is that true?

Hidden Files and Folders

The Unix operating system allows filenames and folder names that start with a
dot. These files are hidden unless you use an a option to view them.

$ ls -la
total 400
drwxr-xr-x+ 53 danielkehoe staff 1802 Sep 27 15:48 .
drwxr-xr-x 6 root admin 204 Dec 8 2014 ..
-rw-r--r--@ 1 danielkehoe staff 16388 Dec 8 05:52 .DS_Store
drwx------ 4 danielkehoe staff 136 Dec 8 13:13 .Trash
-rw------- 1 danielkehoe staff 98661 Dec 12 09:00 .bash_history

QUICK GUIDE TO UNIX COMMANDS 85

-rw-r--r--@ 1 danielkehoe staff 4926 Nov 20 22:10 .bash_profile
-rw-r--r--@ 1 danielkehoe staff 792 Sep 2 2013 .bashrc
drwx------ 6 danielkehoe staff 204 Jun 26 20:24 Applications
drwx------+ 5 danielkehoe staff 170 Dec 7 08:33 Desktop
drwx------+ 12 danielkehoe staff 408 Dec 7 08:06 Documents
drwx------+ 9 danielkehoe staff 306 Dec 12 10:57 Downloads
drwx------@ 57 danielkehoe staff 1938 Aug 30 20:27 Library
drwx------+ 3 danielkehoe staff 102 Jul 28 2013 Movies
drwx------+ 5 danielkehoe staff 170 Sep 21 2014 Music
drwx------+ 22 danielkehoe staff 748 Nov 26 20:57 Pictures
drwxr-xr-x+ 5 danielkehoe staff 170 Aug 11 2013 Public

Now the response is very detailed, showing hidden files as well as information
about file permissions, owner name, groups that have access permissions, file
size, and creation date.

Hidden files are often files that contain configuration settings or user prefer-
ences. In the example above, the .DS_Store file is created by the Mac operat-
ing system to store the screen position of a Finder window. The .bashrc file
contains configuration settings for the Unix shell program named bash.

Box 11.1. Hidden Files in Cloud9

If you’re using Cloud9, you must change preferences to see hidden files. In the
window that contains the file list, there is a gear icon (dark in color and difficult to
see). Clicking the gear option will give you options:

• Show Root File System

• Show Home in Favorites

• Show Hidden Files

You must select all three options to see the hidden files.

86 CHAPTER 11. TERMINAL UNIX

Dots

You might notice that the response lists two files that have dots for names:

QUICK GUIDE TO UNIX COMMANDS 87

$ ls -la
drwxr-xr-x+ 53 danielkehoe staff 1802 Sep 27 15:48 .
drwxr-xr-x 6 root admin 204 Dec 8 2014 ..

These are not really files. These are Unix shortcuts for navigating the file sys-
tem.

The single dot “file” refers to the present working directory.

The double dot “file” is a shortcut for navigating up one level in the file system
hierarchy.

Dot files make Unix commands even more mysterious but they are convenient.

open

On a Mac, you can enter a command in the terminal that opens a Mac Finder
file browser window. The command and argument open . (open space dot)
opens the present working directory. Try it:

$ open .

You should see files and folders listed in the Finder window that are the same
as those displayed in the terminal window. Whether you use the Mac Finder
graphical user interface or the terminal, you are looking at the same file system.

On the Mac, you can point and click to move around the file system. If you
want to move or delete a file, and you don’t remember the appropriate Unix
command, you can use open to open a Finder window and make changes the
Macintosh way.

mkdir

You can create a new folder with the Unix mkdir command.

88 CHAPTER 11. TERMINAL UNIX

Let’s be sure you are in your home directory by using the pwd command. Then
create a workspace folder.

$ cd ~
$ pwd
/Users/danielkehoe
$ mkdir workspace
$ cd workspace
$ pwd
/Users/danielkehoe/workspace

After creating the workspace folder, we cd into the folder and check where we
are with the pwd command.

touch

You can create a new file with the Unix touch command.

Often it is easier to use a text editor to create and save a new file. But we’ll
use the touch command here to create a file we’ll remove later. It is called the
touch command because its intended purpose is update the timestamp on files
or folders by “touching” the file or folder. But the command is also useful for
creating new files.

If you haven’t done anything since entering the previous commands, you’ll still
be in your workspace folder. But let’s enter a command to move you to the
workspace folder, just in case you are elsewhere.

First we cd using a filepath that contains the ~ “tilde” shortcut for the home
directory. In essence, we are saying, “move to the workspace folder contained
in the home directory.”

$ cd ~/workspace
$ pwd
/Users/danielkehoe/workspace
$ touch myfile.txt
$ ls -la

QUICK GUIDE TO UNIX COMMANDS 89

total 8
drwxr-xr-x 7 danielkehoe staff 238 Dec 12 15:11 .
drwxr-xr-x+ 53 danielkehoe staff 1802 Sep 27 15:48 ..
-rw-r--r-- 1 danielkehoe staff 0 Dec 12 15:11 myfile.txt

You’ve created a file myfile.txt inside the workspace folder. Then we list the
contents of the folder so we can see the new file.

mv

Unix provides the mv command to rename files and folders. It’s an abbreviation
for “move” and was originally intended to move a file from one directory to
another. You can use it to move files and folders. And you can use it to “move”
the name of the file as well.

Let’s rename myfile.txt:

$ mv myfile.txt my_file.txt
$ ls -la
total 8
drwxr-xr-x 7 danielkehoe staff 238 Dec 12 15:11 .
drwxr-xr-x+ 53 danielkehoe staff 1802 Sep 27 15:48 ..
-rw-r--r-- 1 danielkehoe staff 0 Dec 12 15:11 my_file.txt

We’ve changed the name of the file by adding an underscore character. The un-
derscore character is commonly used as a substitute for a space between words
in a filename. The Mac operating system can accommodate spaces in filenames
but it is bad practice to use spaces in filenames when you work on the command
line. You can work with filenames that contain spaces by surrounding the file-
name with single quote characters (like ‘my file.txt’) but it is inconvenient and
most developers simply avoid spaces in filenames.

90 CHAPTER 11. TERMINAL UNIX

cp

You can copy a file with cp command. You must enter two filenames as ar-
guments: the name of the original file and the name you want for the copied
file.

$ cp my_file.txt my_file_2.txt
$ ls -la
total 8
drwxr-xr-x 7 danielkehoe staff 238 Dec 12 15:11 .
drwxr-xr-x+ 53 danielkehoe staff 1802 Sep 27 15:48 ..
-rw-r--r-- 1 danielkehoe staff 0 Dec 12 15:11 my_file.txt
-rw-r--r-- 1 danielkehoe staff 0 Dec 12 15:16 my_file_2.txt

The ls response shows we have two files.

The cp command requires flags if we want to copy a folder.

We’ll use the mkdir command to create a folder:

$ mkdir myfolder
$ ls -la
total 8
drwxr-xr-x 7 danielkehoe staff 238 Dec 12 15:11 .
drwxr-xr-x+ 53 danielkehoe staff 1802 Sep 27 15:48 ..
drwxr-xr-x 2 danielkehoe staff 68 Dec 13 05:13 myfolder

Let’s try to copy it:

$ cp myfolder myfolder2
cp: myfolder is a directory (not copied).

The error message indicates we cannot copy a directory.

Let’s try it with the -r flag to recursively copy contents from one folder to
another:

QUICK GUIDE TO UNIX COMMANDS 91

$ cp -r myfolder myfolder2
$ ls -la
total 8
drwxr-xr-x 7 danielkehoe staff 238 Dec 12 15:11 .
drwxr-xr-x+ 53 danielkehoe staff 1802 Sep 27 15:48 ..
drwxr-xr-x 2 danielkehoe staff 68 Dec 13 05:13 myfolder
drwxr-xr-x 2 danielkehoe staff 68 Dec 13 05:21 myfolder2

With the added flag, we are able to copy a folder.

rm

Let’s remove the files we just created. Unix provides rm, the “remove” com-
mand.

First, let’s check that you are still in the workspace folder.

$ pwd
/Users/danielkehoe/workspace
$ ls -la
total 8
drwxr-xr-x 7 danielkehoe staff 238 Dec 12 15:11 .
drwxr-xr-x+ 53 danielkehoe staff 1802 Sep 27 15:48 ..
-rw-r--r-- 1 danielkehoe staff 0 Dec 12 15:11 my_file.txt
-rw-r--r-- 1 danielkehoe staff 0 Dec 12 15:16 my_file_2.txt

Then enter the rm command, providing the filename as an argument:

$ rm my_file.txt
$ rm my_file_2.txt
$ ls -la
total 8
drwxr-xr-x 7 danielkehoe staff 238 Dec 12 15:11 .
drwxr-xr-x+ 53 danielkehoe staff 1802 Sep 27 15:48 ..

The ls command shows the files are gone.

92 CHAPTER 11. TERMINAL UNIX

When you delete a file using the Mac Finder file browser, the file is moved to
a Trash folder. When you use the Unix rm command, the file is gone forever.
There is no Trash folder for recovering a file when you use the rm command.

Removing a Folder

Let’s remove a folder. We’ll assume you are in the workspace folder and the
folders you created earlier are still there.

$ ls -la
total 8
drwxr-xr-x 7 danielkehoe staff 238 Dec 12 15:21 .
drwxr-xr-x+ 53 danielkehoe staff 1802 Sep 27 15:48 ..
drwxr-xr-x 2 danielkehoe staff 68 Dec 13 05:13 myfolder
drwxr-xr-x 2 danielkehoe staff 68 Dec 13 05:21 myfolder2

The ls command shows we have folders myfolder and myfolder2.

We can’t remove a folder with the ordinary rm command:

$ rm myfolder
rm: myfolder: is a directory
$ ls -la
total 8
drwxr-xr-x 7 danielkehoe staff 238 Dec 12 15:11 .
drwxr-xr-x+ 53 danielkehoe staff 1802 Sep 27 15:48 ..
drwxr-xr-x 2 danielkehoe staff 68 Dec 13 05:13 myfolder
drwxr-xr-x 2 danielkehoe staff 68 Dec 13 05:21 myfolder2

We get an error message and the ls command shows the file is still there. This
can be frustrating for someone who is not skilled with Unix.

You’ll need to “set a flag” (use an option) to remove a folder using the rm
command.

QUICK GUIDE TO UNIX COMMANDS 93

$ rm -rf myfolder
$ rm -rf myfolder2
$ ls -la
total 8
drwxr-xr-x 7 danielkehoe staff 238 Dec 12 15:11 .
drwxr-xr-x+ 53 danielkehoe staff 1802 Sep 27 15:48 ..

Now the ls command shows the folders are gone.

We use the r option to remove the contents of the folder recursively. And the
f option to force the removal without asking for confirmation.

The Mouse and the Command Line

The mouse belongs to the graphical user interface. That’s why it doesn’t work
as expected on the command line. Try entering a command at the prompt:

$ rm -rf notmyfolder

If you want to edit the argument and change “notmyfolder” to “myfolder,” you
can try clicking with your mouse at the point where you wish to change the
text. But your mouse click will be ignored. It seems you must use the delete
key to back up from end of the line to retype the argument.

But there’s a trick that works on most computers. If you press “Option” and
click with the mouse, you can edit the command and argument as you would
expect.

You can also move around on the command line with Ctrl-a to go to the be-
ginning of a line, Ctrl-e to move to the end of the line, and Ctrl-u to delete
everything on the command line. If you can’t remember these shortcuts, don’t
worry, you can just use the delete key to move backward and retype when you
need to make changes to commands.

94 CHAPTER 11. TERMINAL UNIX

Arrow Keys

The most useful trick for typing text on the command line is the “up arrow”
key, which scrolls through a list of previous commands. The “down arrow” key
scrolls the history of commands in the opposite direction (forward if you’ve
moved backward).

With Unix, you only need to type a command once and then you can scroll
back to it with the “up arrow” key. It is a real timesaver.

Tab Completion

There’s another trick developers use to save time when entering commands
and arguments in the terminal. If you are entering a filename, and the file
already exists in the present working directory, you can press the “tab” key to
autocomplete the filename after typing a few unique letters of the filename.

If there is more than one filename with the same initial letters, the Unix shell
will balk and beep. Pressing tab again will list all the matching filenames.
Continue typing a few more letters until the Unix shell can identify one unique
filename and autocomplete.

Why Abbreviations?

Our quick introduction to Unix commands taught you about ls, cp, rm and
other common Unix commands. If the commands were spelled out as “list,”
“copy,” or “remove” they might be easier to remember. Some old-timers say
Unix was designed to be efficient on slow teletype terminals. That may be true,
but I believe the abbreviations persist because programmers are lazy and want
to type as few characters as possible. Unix commands may seem obscure but
with repetition they will become familiar. Until then, keep a personal cheat-
sheet as your reference.

WHY ABBREVIATIONS? 95

As you learn Rails and develop applications, you’ll gain experience with Unix
commands. What you’ve learned so far is enough to get started.

96 CHAPTER 11. TERMINAL UNIX

Chapter 12

Text Editor

You’ll need a text editor for writing code and editing files.

Word processing programs, such as Microsoft Word, will not work because
they introduce hidden formatting codes into text files.

Programmers’ text editors provide syntax highlighting, making software code
more readable and programmers more productive. Simple text editors such as
TextEdit for macOS, or WordPad for Microsoft Windows, provide no syntax
highlighting and should be avoided.

You Don’t Need an IDE

Programmers who come to Rails from other platforms, such as Java or C++,
often ask for recommendations for an IDE, or an integrated development envi-
ronment. These are software applications that combine a text editor with built-
in tools such as a debugger. Some Rails developers use JetBrains RubyMine,
Aptana Studio, or Komodo but most Rails developers use only a text editor and
terminal application. You don’t need an IDE unless you’re in the habit of using
one. For a beginner, they are cumbersome and add little additional value.

97

http://en.wikipedia.org/wiki/Text_editor
http://en.wikipedia.org/wiki/Integrated_development_environment
http://en.wikipedia.org/wiki/Integrated_development_environment
http://www.jetbrains.com/ruby/
http://www.aptana.org/products/studio3
http://www.activestate.com/komodo-ide

98 CHAPTER 12. TEXT EDITOR

Which Text Editor

Old-timers and hardcore technologists use text editors that run in the terminal
window:

• vim

• Emacs

There is a long-time rivalry between fans of Emacs and vim (and its predecessor
vi). Between the two, vim is more popular.

Emacs and vi are popular among skilled programmers because there’s no need
to leave the terminal window to edit a file. Programmers keep their fingers on
the keyboard and don’t need to reach for a mouse to use the text editor. That
makes programmers more productive. In the long run, learning vim or Emacs
will make you more productive as well as impressing your colleagues with your
technical skill. Both vim and Emacs are difficult to learn. If you’re a beginner,
don’t attempt to learn vim or Emacs if you’re short on time.

Most beginners will use a text editor with a graphical user interface (GUI).
You’re likely to encounter one of these:

• Atom

• Sublime Text

• TextMate

Atom and Sublime Text are available for macOS, Windows, or Linux.

Install Atom

Atom is an open-source text editor, developed by a team at GitHub. It is the
newest of the text editors. If you have not yet installed a text editor, I recom-
mend getting Atom. It can be downloaded and used for free.

https://en.wikipedia.org/wiki/Vim_(text_editor)
https://en.wikipedia.org/wiki/Emacs
https://atom.io/
http://www.sublimetext.com/
https://en.wikipedia.org/wiki/TextMate

EDITOR SHELL COMMAND 99

If you don’t have a text editor yet, download and install Atom now.

Other Choices

Sublime Text has been popular since 2008, particularly among developers who
began learning Rails in the last seven years. Developers are expected to pay $70
USD for use of Sublime Text, which removes a nagging popup that reminds
users to pay for Sublime Text.

Textmate has been around since 2004 and remains popular among a small group
of veteran Rails developers who have never bothered to learn vim or switch to
Sublime Text or Atom. It is a commercial product priced at $56 USD.

How To Use a Text Editor

You can find tutorials for these text editors on YouTube. Or skim the Atom
documentation or Sublime Text documentation.

For a book with tips and tricks about using a text editor efficiently, see Learn
Enough Text Editor to Be Dangerous.

Editor Shell Command

Carefully follow the instructions for installing your text editor. Installation is
like any other desktop application; however, there is an unusual and important
final step. Developers want to launch a text editor and open a file for editing by
typing a command in the terminal window.

If you’ve installed Atom, click the “Install shell commands” item under the
“Atom” menu to enable the atom command. If you do so, you can open a file
in Atom from the command line:

https://atom.io/
https://atom.io/docs
https://atom.io/docs
https://www.sublimetext.com/docs/3/
https://www.learnenough.com/text-editor-tutorial
https://www.learnenough.com/text-editor-tutorial

100 CHAPTER 12. TEXT EDITOR

$ atom myfile.txt

Sublime Text has a similar configuration option for the Mac, though it takes
more fiddling to set up. The Sublime Text documentation explains how. If you
need more help, see Olivier Lacan’s blog post, Launch Sublime Text 3 from
the Command Line. After you’ve completed the configuration, you can open a
file in Sublime Text from the command line:

$ subl myfile.txt

Opening a file from the command line is a big win for productivity.

It’s even more useful to open an entire folder from the command line. In the
“Terminal Unix” chapter, you learned that Unix has a “dot file” that represents
the present working directory. To open an entire folder in Atom, try:

$ atom .

The text editor window will display a “tree view” of files and folders in a win-
dow pane. Click on any file to open it. It is very convenient to see an entire
project at a glance in your text editor.

http://www.sublimetext.com/docs/3/osx_command_line.html
http://olivierlacan.com/posts/launch-sublime-text-3-from-the-command-line/
http://olivierlacan.com/posts/launch-sublime-text-3-from-the-command-line/

Chapter 13

Learn Ruby

Experienced Rails developers debate whether beginners should study Ruby be-
fore learning Rails.

Most experienced Rails developers recommend that you study Ruby before
attempting to learn Rails. Most code camps teach a week or two of Ruby before
introducing web development with Rails. Given that Rails is based on the
Ruby programming language, it seems logical to teach Ruby as a prerequisite
to learning Rails.

There are several flaws with this approach. Every “learn Ruby” book, video,
or online course teaches Ruby with a series of classroom exercises. A concept
is introduced, followed by examples, and then a programming puzzle or quiz,
much like the way arithmetic was taught to children in the 1950s. If you are
academically gifted, you can learn the basics of Ruby with this approach. But
many people become frustrated and don’t learn well this way.

Though experienced Rails developers think a beginner should learn Ruby this
way, many actually knew other programming languages already, and learned
Ruby by skimming a language reference to notice differences, and googled for
help when they needed to figure out how to write something in Ruby. They
improved their skills by reading blogs or watching screencasts such as Avdi
Grimm’s Ruby Tapas. But mostly they learned Ruby by working on real-world

101

http://www.rubytapas.com/

102 CHAPTER 13. LEARN RUBY

problems that required skill with Ruby.

The fact is, though you can get oriented to the basics of Ruby in a week, it takes
a year or more of regular use of the language to gain proficiency. Rubyists de-
velop their skill with Ruby over years, not weeks. That’s true of most general
purpose programming languages. Learning Ruby is a lifelong education pro-
gram, not a short course.

Does that mean you’ll never learn Rails? On the contrary. Despite what ex-
perienced Rails developers will say, you can begin building Rails applications
without developing Ruby proficiency. Rails is largely a DSL, or domain spe-
cific language, with its own keywords and directives built using Ruby, and
following the Ruby language syntax. Many developers started learning Rails
by following tutorials to build Rails applications without first studying Ruby.
You will pick it up as you go along.

Before my colleagues lambast me for leading newbies astray, let me say that
trying to learn Rails without making an effort to learn Ruby is inefficient and
counter productive. As you follow a Rails tutorial, make a parallel effort to
learn Ruby. One will support the other. By building real applications with
Ruby and Rails, and making an effort to learn more about Ruby at the same
time, you’ll be motivated to learn Ruby and you’ll retain more knowledge of
Ruby. And you’ll be a better Rails developer.

Ruby Language Literacy

In this book series, I’ve taken a realistic approach. In Book Two, you will get
started building a real-world Rails application. You will gain familiarity with
the syntax of the Ruby language by studying the code that is needed to build the
application. After you’ve been exposed to real-world Rails code, you’ll read a
short chapter to learn about the basic features of the Ruby language. The goal
of the chapter is to develop Ruby language literacy. With a grounding in real-
world Rails code, and a short introduction to the Ruby language, you’ll have a
solid basis to develop your Ruby knowledge plus motivation to do so.

RESOURCES FOR LEARNING RUBY 103

What you need, more than anything, when you start working with Rails, is read-
ing knowledge of Ruby. With a reading knowledge of Ruby you’ll avoid feeling
overwhelmed or lost when you encounter code examples or work through a tu-
torial. Later, as you tackle complex projects and write original code, you’ll
need to know enough of the Ruby language to implement the features you
need. But as a student, you’ll be following tutorials that give you all the Ruby
you need. Your job is to recognize the language keywords and use the correct
syntax when you type Ruby code in your text editor.

Your hardest challenge will be to learn the names of the structures you see in
code examples. This is why it is helpful to work your way through a short in-
troduction to Ruby. You’ll need to be able to recognize when you are looking
at an array or a hash. You should recognize when you are looking at an iterator
or the Ruby block syntax. Eventually, you’ll recognize more exotic Ruby for-
mulations such as the lambda. It is okay if you can’t write a lambda function or
even know when to use one; many Rails developers start work before learning
Ruby thoroughly.

By all means, if you love the precision and order of programming languages,
dive into the study of Ruby from the beginning. It’s good advice, just not
for everyone. If you’ve got the time and inclination, get started with these
recommended books and videos before you read Book Two. If you can, study
them at the same time you work on the project in Book Two. At the very least,
look at these resources after you finish Book Two and before you start another
tutorial. You’ll be glad you did.

Resources for Learning Ruby

Collaborative Learning

The best way to learn Ruby is to actually use it. That’s the concept behind this
site:

104 CHAPTER 13. LEARN RUBY

• Exercism.io

With Exercism, you’ll work though code exercises and get feedback from other
learners.

Online Tutorials

• TryRuby.org - free browser-based interactive tutorial from Code School

• Codecademy Ruby Track - free browser-based interactive tutorials from
Codecademy

• Ruby Koans - free browser-based interactive exercises from Jim Weirich
and Joe O’Brien

• Ruby in 100 Minutes - free tutorial from JumpstartLab

• Code Like This - free tutorials by Alex Chaffee

• RailsBridge Ruby - basic introduction to Ruby

• CodeSchool Ruby Track - instructional videos with in-browser coding
exercises

Books

• Learn To Program - free ebook by Chris Pine

• Learn To Program - expanded $18.50 ebook by Chris Pine

• Learn Ruby the Hard Way - free from Zed Shaw and Rob Sobers

• Beginning Ruby - by Peter Cooper

• Programming Ruby - by Dave Thomas, Andy Hunt, and Chad Fowler

http://exercism.io/
http://www.tryruby.org
http://www.codecademy.com/tracks/ruby
http://rubykoans.com/
http://tutorials.jumpstartlab.com/projects/ruby_in_100_minutes.html
http://codelikethis.com/lessons
http://curriculum.railsbridge.org/ruby/ruby
https://www.codeschool.com/paths/ruby
http://pine.fm/LearnToProgram/
http://pragprog.com/book/ltp2/learn-to-program
https://learnrubythehardway.org/book/
http://www.codewithc.com/beginning-ruby-pdf-peter-cooper/
http://pragprog.com/book/ruby4/programming-ruby-1-9-2-0

RESOURCES FOR LEARNING RUBY 105

• Eloquent Ruby - by Russ Olsen

• Books by Avdi Grimm, including Confident Ruby and Objects on Rails.

Newsletters

• Practicing Ruby - over 90 helpful articles on Ruby

• RubySteps - weekly lessons by email from Pat Maddox

Screencasts

• RubyTapas - $9/month for access to over 100 screencasts on Ruby

http://www.amazon.com/Eloquent-Ruby-Addison-Wesley-Professional-Series/dp/0321584104/
https://shiprise.dpdcart.com/
http://practicingruby.com/
https://rubysteps.com/
http://www.rubytapas.com/

106 CHAPTER 13. LEARN RUBY

Chapter 14

Crossing the Chasm

In my books, you learn how programming is actually done in practice. In this
book, you learn about the culture of Rails beyond the code. In Book Two, you’ll
follow step-by-step instructions to build and deploy a real Rails application.

This chapter is here to help you surmount the problems that come after you
finish my books. You can wait and read it later, after you’ve built applications
using tutorials, or you can read it now and learn to overcome the challenges
you’ll face when you are done reading tutorials.

What comes next partly depends on your goals. You may be eager to launch
a startup, you may want a job as a developer, or you may have a project to
tackle at work or in your spare time. Whatever you choose to do, you’ll face
the challenge of building an application without instructions. Here I’ll give you
ideas about overcoming that challenge.

Facing the Gap

There’s a name for the obstacle that lies in wait for beginners who teach them-
selves to code by following a tutorial. I call it the “tutorial gap.” It’s the yawn-
ing chasm you face when it is time to build a custom application of your own.

107

108 CHAPTER 14. CROSSING THE CHASM

Even though you’ve just built and deployed a working application, the moment
you are without instructions, the chasm will open wide. You’ll feel it most
acutely when you realize you don’t know where to start. Should you search for
a gem? Should you start by building a view, a model, or a controller? Should
you do test-first development and write a test? What should you test if you
don’t know where to start?

A similar problem lies in wait for beginners the first day on the job. You’ll
hear it called the “junior gap.” The term refers to the chasm between the time
a developer is hired and becomes a “junior dev.” A “junior dev” is a team
member who is more-or-less self-sufficient, learning new skills without being
a burden for other developers, and able to contribute to a company at a level that
increases team productivity. Whether self-taught, hired after graduation from a
university, or from a 9 or 12 week code camp, new staff members seldom have
the skills to be fully productive members of a team. Your success at a new job
depends on how quickly you overcome the junior gap.

The “tutorial gap” and the “junior gap” are versions of the same chasm. You’ll
cross the chasm each time you build an application. The more applications
you build, the narrower the chasm becomes, and the less help you need, until
you’ve crossed the chasm so many times that panic is replaced by delight when
someone asks you to implement something you’ve never encountered before.
That’s the point when you’ve become a self-sufficient and productive developer.

If you assume that becoming a successful developer depends on acquiring tech-
nical skills, the chasm may thwart you. The chasm cannot be crossed with tech-
nical knowledge, no matter how much you learn about Ruby, Rails, JavaScript
or any other technology. Crossing the chasm requires “soft skills,” including
cultivating your own problem-solving abilities, and realizing that software de-
velopment is fundamentally a social activity.

In this chapter, I’m going to describe two ways to cross the chasm. First, I’ll
give you a technique to jump start work on a custom application. It’s a strategy
that will enhance your problem-solving abilities. After that I’ll suggest how to
get help from a mentor, focusing on the social practice that is at the heart of
software development.

BRIDGING THE GAP WITH A STRATEGY 109

Bridging the Gap With a Strategy

When you start work on a custom application, you’re like a writer who has
to write an essay and faces a blank screen. If you’ve been taught to write an
essay, you probably learned to make an outline and start with a topic sentence
or introductory statement. Not every writer starts that way, but it’s a strategy to
get started. You can use a similar strategy to get started with custom application
development. Here’s a process you can use:

• Ask: Why will someone want to use your application? Write a product
description.

• Ask: What will a visitor first see and do? Write a user story for the home
page.

• If you like to think visually, create wireframes for some of the important
features.

• Create user stories for some of the important features.

• Generate a starter application with rails new or Rails Composer.

• Pick any user story. Make a static page using HTML to mock up what
the user will see.

• Write a feature test to verify the content on your static page. This is your
first code.

• Create a model. Use the model to set a variable containing some string
from the static page.

• Create a controller. Give it the same name as the model. Create a route
for the controller.

• Replace the static page with a dynamic page. Use the controller to set an
instance variable and render a view.

http://www.railscomposer.com/

110 CHAPTER 14. CROSSING THE CHASM

• Does your feature test still pass? Modify your feature test if necessary.

• Ask: How will data displayed on the page get into the model? From a
third-party API? A user-submitted form?

• Replace the hard-coded string in the model with dynamic data obtained
from a user or an API.

• Check your feature test. Does it still pass? Do you need to change the
test to use the model?

• Ask: Have you implemented the user story? Do you need to revise the
user story?

• Commit your work to Git. Then throw it away if you’re not satisfied.
You can always “do over” later.

• Ask: Is there another user story you can implement? Get started again.

You may have to repeat this process many times before you have something
you can keep. Each time, you will discover what you don’t know. Perhaps you
haven’t expressed a user story well and you need to rethink your feature. Or
you’ve reached the limit of your technical knowledge and you need to do some
research and further study. Each time you repeat this process you are practicing
crossing the chasm.

Not every writer starts an essay the same way, and not every developer will
use the strategy detailed above. If you’ve ever faced writers’ block, you may
have heard this advice from teachers: Write something, anything, just to get
started. It’s the same with software code: Just begin, anywhere. If you follow
the strategy described above, you’ll have a place to get started. It is a process
you can repeat when you start any application. If you need more help, see the
book Practicing Rails by Justin Weiss, which provides advice and exercises to
overcome the tutorial gap.

https://www.justinweiss.com/book/

BRIDGING THE GAP WITH SOCIAL PRACTICE 111

Bridging the Gap With Social Practice

Let’s consider the social aspect of software development.

If you work on your own, trying to master the art of software development, it
will take you a very long time, you’ll need extraordinary patience and tenac-
ity, and you won’t become a very good software developer. To accelerate the
process, and improve your skill, you must reach out to others. If you’re shy
and introverted, this will be hard; if you’re bossy or reluctant to reveal your
shortcomings, it may also be difficult. However, you must make the effort if
you want to cross the chasm.

Software development often looks like a solo activity but it is not. Developers
talk to users to improve the user interface and product features. Open source
libraries, whether gems or full frameworks like Rails, are developed collabora-
tively. Code reviews are an opportunity to ask others to help you improve your
implementation. Pairing is an intense and effective way to write better code
and share knowledge. You’ll learn more, and faster, from both experienced
developers and inexperienced peers, when you work with others.

Making an Effort

It is important to have a strategy to get started on your own, as described above.
You must make an initial effort, even if picking yourself up by your bootstraps
doesn’t get you very far. No one, particularly software developers, wants to
help someone who can’t show they’ve made a best effort on their own. You may
surprise yourself when you make an initial effort; you’ll find out what you know
and identify what you need to learn. Start a list of topics you need to research or
questions you need to answer. Do research. If no clear answer emerges, list the
possibilities and show them to someone else. Even if you think you’ve found
the answer on Stack Overflow or a blog, show someone your initial problem
and the solution you’ve found. Find out if your colleague agrees or has another
perspective. Showing someone your research shows you’ve made an effort and
it will make it easier to ask for help when research doesn’t provide a solution.

112 CHAPTER 14. CROSSING THE CHASM

(Refer to the “Get Help When You Need It” chapter if you’re not sure where to
do research.)

Conversation Starters

You can ask people to answer questions online, on Stack Overflow, Reddit,
Quora, mailing lists, forums, IRC channels, or even by directly sending email
to developers. This counts as social activity but it is inherently limited. Open-
ended interaction is better, either in person or through video chat. Prime the
pump with to-the-point questions, as you would on Stack Overflow, but allow
the conversation to meander. Make sure your conversation includes conversa-
tion helpers like these:

• What do you think?

• How would you do this?

• Is there a better way?

• What do you think I should look at next?

Ask the kind of questions that elicit opinions that you can’t ask on Stack Over-
flow. Never forget to acknowledge the gift you’re receiving of time and knowl-
edge. Express your thanks, state clearly how the conversation has benefited
you, and offer to report back on how the collaboration has helped your progress.

Pay It Forward

Don’t be shy about asking for help. If you’ve made a best effort to solve a
problem on your own, and you’re willing to help others in the future, you’ll get
all the help you need, and more.

http://stackoverflow.com/questions/tagged/ruby-on-rails
http://www.reddit.com/r/rails
http://www.quora.com/

FINDING A MENTOR 113

There’s an unwritten rule of the open source movement. It applies whenever
you ask a stranger for help, whether opening an issue on GitHub or asking
for help with a project. You are not entitled to anything, whether its software
code, a bug fix, or just help, if you’re only consuming. Open source is free for
the taking but you’re not welcome if you’re a mooch. Luckily for all of us,
causality rules do not apply (or at least there’s no temporal causality). That
means, if you contribute something in the future, help will be forthcoming,
sometimes more profusely than you’ve asked for. You must contribute in kind,
of course. If you offer to pay money to have a bug fixed, you’re violating the
spirit of open source, and you can expect either grumpiness, a hefty consulting
fee, or both. If you indicate you’re willing to help with documentation or code,
you’ll be welcomed even if you’re currently incapable of contributing. This
applies in an interesting way to beginners. If you show you’ve tried to solve a
problem on your own, and ask for help, many developers will help without any
compensation other than the conviction that someday you’ll help someone in
a similar situation. Software development relies on a booming pay it forward
economy.

Finding a Mentor

Now that you’ve given some thought to the social aspect of software develop-
ment, let’s consider where to go for help.

When career advisors talk about closing the junior gap, they’ll often point to
the importance of mentorship as the key element in becoming a skilled software
developer. It’s just as important when you’re developing software for a startup
or a personal project. Mentorship will help you cross the chasm.

You may ask, how can I find a mentor? In your mind’s eye, you may be imag-
ining the mentor that will help you become a skilled Rails developer. He or she
is a few years older than yourself, has a great job leading a team at a success-
ful startup, probably contributes to several well-known open source gems, and
takes a break every Saturday for a few hours to teach you how to code. Sorry,

http://en.wikipedia.org/wiki/Pay_It_Forward_(novel)

114 CHAPTER 14. CROSSING THE CHASM

that is not likely to happen.

The mentors who will help you will not fit the picture of a wise sage or crone,
no more than Prince Charming or Princess Buttercup will ever be anyone’s
spouse. In most situations, the mentorship relationship will be unacknowl-
edged. The seeds of mentorship lie in any interaction where you ask for help
and receive guidance.

Mentorship is a relationship you must cultivate, much like friendship. And, like
friendship, you will seldom ever ask someone to be your mentor. Most people
would balk at the awkwardness, either because they don’t see themselves as
qualified, or because it suggests an open-ended commitment and responsibility
that is intrusive. Like making new friends, it is your job to seek out mentoring
moments, ensure the experience is mutually rewarding, and suggest the pos-
sibility of repeating the experience. Mentorship is a relationship built from a
series of successful mentoring interactions. Repeat the interactions and you
have mentorship.

Creating Mentorship Moments

In the chapter “Get Help When You Need It,” you learned where to look for
help. Let’s consider where you can look for opportunities to experience men-
torship moments.

Online

When you ask for help on Stack Overflow, Reddit, or Quora, the answers will
be most useful when you focus narrowly on a specific question. Mentorship
comes from open-ended interaction, when a conversation can move in unan-
ticipated directions, so most online interactions seldom turn into mentorship
moments.

Online interactions may help you find people who can coach you. Clicking on

http://stackoverflow.com/questions/tagged/ruby-on-rails
http://www.reddit.com/r/rails
http://www.quora.com/

CREATING MENTORSHIP MOMENTS 115

a user’s name on a site such as Stack Overflow, Reddit, or Quora will show
you a user’s profile. When someone is helpful or knowledgeable, check if they
show their geographic location in their profile. If they don’t, perhaps they’ve
provided a link to their website or Twitter account. If not, you may be able to
send a private message. Reach out and ask where they are located, if they have
time to meet to answer more questions, or can suggest anyone in your city who
might be helpful. It is worth checking to see if someone is local even though
most people online are not nearby.

GitHub

GitHub is a special case. Interactions on GitHub are at the core of the Rails
community. It’s where open source software gets built. Collaboration on
GitHub leads to mentorship, friendships, and business partnerships. That’s why
it is so important to build a credible GitHub profile by uploading the projects
you build while learning, to show that you are working steadily at becoming a
better programmer.

When you look at a repository on GitHub, look at the account of the person
who maintains the project. Look at the commits and the issues. Click through
to the profiles of the people who’ve made the commits or commented on the
issues. Experienced developers often show their location in their profile and
provide their email address. If you find someone in your city, make contact.
Of course, don’t ask a stranger point-blank to be a mentor! Tell them about
your experience and what interests you. Ask where you can meet developers
locally. You may learn about a meetup or user group meeting. If your contact
is helpful, you may have an opportunity to meet for coffee.

Meetups

Meetups are a prime place to cultivate in-person mentorship moments. All
large metro areas have active meetups for web developers, Rails developers,

116 CHAPTER 14. CROSSING THE CHASM

programmers, or startup entrepreneurs. If you’re in a rural area, make the drive
once a month to the big city to connect with the community. To find the mee-
tups, search Meetup.com or google “ruby rails (my city)”. If you’re near a uni-
versity campus, check for activity on the campus. If you’re in a tech hub such
as San Francisco, there’s a meetup almost every night of the week. Smaller
cities have relevant meetups monthly. If you can’t find a meetup, start one!

When you visit a meetup, remember that mentorship can be hidden in anyone.
Like any public event, you’ll meet people who are flakey, bigoted, garrulous,
prone to halitosis or innumerable personality quirks, as well as a minority who
are fascinating and obviously knowledgeable. Don’t dismiss anyone. You’ll
find mentorship moments where you least expect them.

Workshops and Classes

You may be surprised that workshops and classes are not the ideal place to
find a mentor. Obviously, given a good instructor and a relevant curriculum, a
workshop or class is a great place to learn. However, it is very unlikely that
a teacher will become an ongoing mentor. The instructor’s goal is to share
knowledge with a group of people, so any focus on you as an individual has to
be limited. Furthermore, the instructor is probably not available outside of the
class or on an ongoing basis. Don’t sign up for a class hoping the instructor
will become your mentor.

However, a workshop or class is an ideal place to connect with peers. There
is no other place where you’ll easily find other people who want to learn the
same things as you. When I teach, I’m surprised how often people come to a
class expecting their education will end as soon as the class is over. If you take
a class, seize the opportunity to make one new friend who will be your study
partner after the class ends. Better yet, organize a study group to continue
after the class is over. If you have only one new study partner, he or she can
flake out. Instead, get together with three or four other learners once a week.
Support each other, share your excitement, and invite mentors to come speak
to your study group.

http://www.meetup.com/

CREATING MENTORSHIP MOMENTS 117

Peer learning has much in common with mentorship. The leading code camps
recognize that collaborative problem-solving skills are as important as techni-
cal skills. When students team up to work through exercises or build applica-
tions, there’s a natural give-and-take as each takes turns making discoveries and
sharing knowledge. You don’t have to enroll in code camp to be part of a peer
learning environment; you can create it yourself in a study group. This isn’t
a relationship of mentorship, but it is an opportunity to experience mentorship
moments.

On the Job

You are most likely to find a commitment to mentorship on the job. If you’ve
been hired to work as a Rails developer, at a company with Rails developers on
the team, you’re in an ideal environment to learn. Not everyone has the skills to
be a good mentor and you may struggle if you are stuck with a senior developer
who is a know-it-all or assumes you know more than you do. Still, you have
immediate access to developers with knowledge and the company has every
reason to encourage you to learn. Unless the company has an explicit program
to assign coaches to new hires, you will probably not call someone your mentor.
Instead, recognize that you can cultivate mentorship moments by asking for
guidance beyond the immediate assignment. In a stressful environment where
your team is delivering code against deadlines, not everyone may be able to
devote time to teaching. You should seek mentorship moments where you can.

Some companies are committed to building a culture of mentorship. When you
are looking for a job, make it your priority to seek a job offer from companies
where you will find mentors. For a first job as a developer, the opportunity to
learn on the job is far more valuable than any other benefits. When you inter-
view, ask if the company encourages pair programming. Ask if you will have
time to work on a pet project to learn new skills, and if it will be acceptable to
ask your teammates to answer questions or provide a code review for your pet
project. Ask if the company encourages team presentations about new tech-
nologies. Ask if anyone from the company volunteers to teach at workshops

118 CHAPTER 14. CROSSING THE CHASM

or gives presentations at meetups or conferences. Some hiring managers will
be proud to describe the company’s commitment to developer education. If
they’re not, it’s a red flag that the company may not be a good fit for you.

Small startups are not a good place to look for mentorship, if the runway is
short and the founders are trying to launch before funding runs out. Companies
that have closed a Series A round (the first release of stock to venture capital
firms and other private equity investors) will still be tightly focused on getting
a product to market, with no time to coach new hires. As a company takes
additional rounds of investment, beyond the Series B round, the company will
have grown beyond an initial two or three engineers and may recognize the
value of hiring and coaching inexperienced developers. To some companies,
mentorship is part of a strategy to develop their technical depth. These are the
companies that are ideal for new developers.

What’s Next

If your goal is to start a career as a Rails developer, your objective should be
to find a job at company that is committed to mentorship. You’ll need to learn
more than what is offered in this book and the next, but you can continue learn-
ing while you “go social” to cultivate mentorship moments and meet people
who can introduce you to companies that are hiring Rails developers. Going
to meetups, collaborating on code, and participating in a study group will help
you find mentors and help you find a job.

If you are eager to launch a startup, or plan to work on a personal project, your
next step will be different. Let’s consider what you should do after finishing
this book if you’re an entrepreneur, developing a lifestyle business, or working
on a personal “side project.”

http://en.wikipedia.org/wiki/Series_A_round

WHAT’S NEXT 119

Entrepreneurs

If you want to launch a startup, stop and ask yourself what your priorities
should be. Startup success depends on asking yourself every day, “What is
the most important task I need to accomplish today?” Chances are, it is not
learning to code. Working through my books, you’ll learn enough to work with
a skilled developer, whether a cofounder, an employee, or contractors. Your
most important task is to determine the product/market fit for your business
idea. You must develop a Minimum Viable Product (MVP) and start the pro-
cess of acquiring customers who can tell you if your product has value. Any-
thing else defers the day of judgment when real customers will tell you whether
they are willing to spend money on your product.

If you are pursuing your own business vision, you’ll only delay judgment day
if your priority is to learn Rails. If you haven’t already, start looking for a tech-
nical cofounder or people you can hire (if you have your own funds). Angel
investors and venture capitalists are reluctant to fund a solo founder, even when
an entrepreneur is highly skilled technically. Investors place more importance
on the ability and track record of the team than on a business idea; obviously,
a skilled team is a better investment risk than a solo founder who just started
learning Rails. In today’s investment climate, you won’t be seeking invest-
ment if you don’t yet have an MVP and customer traction. But you should
start recruiting your team. The good news is that you’ve learned enough about
web development to have credibility when approaching a potential technical
cofounder. Among developers, there is no one more ridiculed than the non-
technical founder who makes no effort to learn to code and expects someone
else to do all the technical work. You’re not that guy or girl. You could build
your web application yourself, given enough time. But in the best interests of
your business, you should look for a partner who will be your technical mentor,
guide, and helpmate as you become a better coder and build out your MVP.

You can seek a technical cofounder in the same way you seek mentorship mo-
ments. Your agenda will be larger; anyone who is a mentor or peer may be a
potential business partner. Look for help to improve your technical proficiency.
As you build a personal relationship with a mentor or peer, you may have an

http://en.wikipedia.org/wiki/Product/market_fit
http://en.wikipedia.org/wiki/Minimum_viable_product

120 CHAPTER 14. CROSSING THE CHASM

opportunity to introduce someone to your business vision. It is very unlikely
you can build a business on your own, so start looking for a partner while you
continue to learn to code and develop your MVP.

You won’t be having meetings with potential partners every day. On days when
you are not looking for a partner, work on the user stories that will define
the requirements for your MVP. You don’t need anything more than you’ve
learned in this book to develop your user stories and plan your product. Work
on wireframes and show your ideas to anyone who will listen. Take a break
from product planning to work on your coding skills. Try tackling one or two
user stories and see if you can implement a basic feature you need for your
MVP. There’s no better way to learn to code than building the product that you
need for your business, especially if you get help and feedback along the way.

Lifestyle Businesses and Personal Projects

Don’t let anyone discourage you if you have an idea for a web application that
will supplement your earnings from a job, or even let you quit your job to en-
joy a “lifestyle.” The investment community disdains lifestyle businesses that
have limited “upside” (the revenue growth that rewards investors). Personally,
I think lifestyle businesses are great. Without the pressure from investors, and
with income from an existing job, you can take your time to learn to code, en-
joying the process of learning application development with your goal in mind.
It is still worthwhile to seek out a mentor, but you can continue to pursue learn-
ing on your own with all the resources we list in the next chapter.

Personal projects can become lifestyle businesses when they begin to generate
revenue. Of course, there are many personal projects that are not intended to
be moneymakers, for example, a web application for a faith group or a charity,
or just a side project that helps you learn to code. Again, seek mentorship
moments, or work in a group that learns together, and you’ll develop your
skills faster. Play around with user stories and wireframes to see if it helps you
organize your project. Try writing feature tests. You may not need to write
tests for a personal project but you may discover a feeling of competence and

BUILD APPLICATIONS 121

confidence that goes with testing. With a personal project, the journey is the
reward. Indulge in the luxury of learning for its own sake and focus on the
satisfaction of seeing applications run that you’ve built with technologies that
are new to you.

Build Applications

If you want to become a skilled Rails developer, nothing is more important
than building applications. As you’ll see in the next chapter, there is so much
to learn about web application development that you can (and likely will) con-
tinue to learn until the web goes dark. Don’t try to learn it all. Start building
applications now.

Building applications puts everything you learn in practical context. The fea-
tures you want to build will set the priorities for what you learn next. If you
want users to sign in to an application, you’ll learn about authentication. If you
want want to show stock prices or sports scores, you’ll learn about JavaScript
and charts. There’s no better way to learn than by building.

Build simple applications at first, with only one small feature. Take them all the
way from user stories to deployment. Use Rails Composer if you want to get
started fast so you can focus on your custom features. Commit your projects
to your GitHub account, no matter how trivial or broken. Putting your projects
on GitHub will show that are working hard and gaining experience. If you’re
going on job interviews, employers probably won’t have time to look at your
GitHub account, but you’ll gain points in a job interview if you can point to
a GitHub repository to show something you’ve built, or when you answer a
question like, “What is the hardest problem you’ve had to solve?”

Some beginners set a goal, such as building one new application every week.
That’s a great plan. When your applications get more complex, they will make
take more than a week to build, but keep on building. If you don’t have any
ideas for what to build, ask for ideas on Reddit or Quora and the indefatigable
commenters will gladly answer. At a minimum, you should build (and thor-

http://www.railscomposer.com/
http://www.reddit.com/r/rails
http://www.quora.com/

122 CHAPTER 14. CROSSING THE CHASM

oughly understand) each of the starter applications you can build with Rails
Composer.

With every application you build, the chasm of the “tutorial gap” will narrow
and you will broaden your ability to tackle unfamiliar problems and challenges.

In the next chapter, we’ll consider specific technical skills and I’ll make recom-
mendations for books and tutorials that will increase your technical proficiency,

http://www.railscomposer.com/
http://www.railscomposer.com/

Chapter 15

Level Up

With this book, you’re on the way to becoming a successful Rails developer.
You’ve learned about basic concepts and discovered where to go for help. But
there’s much more to learn about Rails and web application development. This
chapter will suggest the next steps on your path to learning Rails.

What to Learn Next

In Book Two, you’ll build a simple web application. It will cover the basics:

• Rails directory structure

• using Git

• installing gems

• configuring an application

• the request-response cycle

• model-view-controller architecture

123

124 CHAPTER 15. LEVEL UP

• application layout and views

• front-end frameworks

• forms

• sending mail

• connecting to external services

• deploying an application

• analytics for traffic and usage

In addition, you’ll get an introduction to the Ruby language and the basics of
testing.

Visit tutorials.railsapps.org to learn how to get Book Two.

Here are topics you should study after Book Two:

• Databases

• Testing

• Sessions and Authentication

• Authorization

• JavaScript

I’ll explain each topic and suggest where to learn more.

https://tutorials.railsapps.org/#plans

WHAT TO LEARN NEXT 125

Databases

Book Two will explain how to create a model, a software object that represents
data in a database.

When you create a model, you create an object that handles data only for the
brief life of the request-response cycle, when it is active in a computer’s work-
ing memory. You’ll want data to persist beyond the brief request-response
cycle, after objects disappear from working memory. Rails does not include a
built-in database. It offers the flexibility of using several different industrial-
grade database systems. Relational database management systems such as
SQLite, PostgreSQL, MySQL, and Oracle all use Structured Query Language
(SQL) as an interface to store and retrieve data. These databases run separately
from a web application, requiring their own database servers.

Rails provides a component, named Active Record, that connects to these
database servers. Active Record is a framework for Object-Relational Map-
ping (ORM), connecting application models to database tables in a relational
database management system (DBMS). Active Record makes it possible to
save model data as a record in an external database, preserving complex re-
lationships among the data.

Application development would be easy if we could just use spreadsheets to
save our data. However, some data, such as a document, is too large to fit in the
columns and rows of a spreadsheet. More significantly, database management
systems are designed to accommodate relationships among the data. That’s
why they are called relational database management systems. For example,
an ecommerce application might have a Customer model and an Order model.
Active Record allows developers to use the Rails API to describe associations
among models and interact with a database. For example, you can make sure
that an order is not created unless it is associated with a customer. Additionally,
Active Record provides a query interface. You can use the query interface to
find all orders associated with a particular customer.

http://www.sqlite.org/
http://www.postgresql.org/
http://www.mysql.com/
http://en.wikipedia.org/wiki/Oracle_Corporation
http://en.wikipedia.org/wiki/SQL
http://guides.rubyonrails.org/active_record_basics.html

126 CHAPTER 15. LEVEL UP

Where to Learn

For a focused, fast introduction to Rails and databases, you should read the
book:

• Easy Active Record for Rails Developers by Jason Gilmore ($29 USD)

It is my recommended follow-on to learn more about databases.

Testing

You learned about the basic concepts and terminology of testing in Book Two.
If you’re working on a personal project or your own startup, you can learn more
about Minitest to gain the skill you need to write robust tests. If you expect to
work with other Rails developers professionally, you’ll need to learn to use
RSpec for testing.

Where to Learn

Every intermediate-level Rails book talks about testing, without any introduc-
tion to the terminology and concepts of testing. Review the “Testing” chapter
in Book Two, then learn to set up and use RSpec with a tutorial I’ve written,
The RSpec Tutorial, which is part of the Capstone Rails Tutorials series.

To learn more about RSpec, read these two excellent books:

• Everyday Rails Testing with RSpec by Aaron Sumner ($19 USD)

• Rails 4 Test Prescriptions by Noel Rappin ($25 USD)

You don’t have to read these books immediately, but be sure to add them to
your reading list.

http://easyactiverecord.com/
https://github.com/seattlerb/minitest
http://rspec.info/
https://tutorials.railsapps.org/rspec-tutorial
https://tutorials.railsapps.org/
https://leanpub.com/everydayrailsrspec
http://pragprog.com/book/nrtest2/rails-4-test-prescriptions

WHAT TO LEARN NEXT 127

Authentication and Sessions

Most web applications need a way for users to sign in, permitting access to
some features of the application only for signed-in users. The popular gem De-
vise is used to add authentication for users who register with an email address
and password. OmniAuth is a gem for authentication using a service such as
Facebook, Twitter, or GitHub. Most Rails developers will use these gems be-
cause they are robust and well-tested.

To understand how authentication works, you’ll need to learn about sessions in
a web application. The web, as originally built, was stateless. A server simply
responded to a request by delivering a file. To enable ecommerce applications,
cookies were adopted in 1997 as a way to preserve state. Each time the browser
makes a request, it will send a cookie. A web application will check the value
of the cookie and, if the value remains the same, the application will recognize
the requests as a sequence of actions or a session. A session begins with the first
request from a browser to a web application and continues until the browser is
closed. Cookie-based sessions give us a way to manage data through multiple
browser requests. Rails does all the work of setting up an encrypted, tamper-
proof session. The data we most often want to persist throughout a session is
an object that represents the user.

Where to Learn

To get started quickly with either Devise or OmniAuth, I’ve written two tutori-
als which are part of the Capstone Rails Tutorials series:

• Devise Quickstart Guide

• OmniAuth Tutorial

As a learning exercise, it is worthwhile to build authentication from scratch
without Devise or OmniAuth. Michael Hartl’s popular book shows how to
build authentication from scratch:

https://github.com/plataformatec/devise
https://github.com/plataformatec/devise
https://github.com/intridea/omniauth/wiki
http://en.wikipedia.org/wiki/HTTP_cookie
https://tutorials.railsapps.org/
https://tutorials.railsapps.org/devise
https://tutorials.railsapps.org/omniauth

128 CHAPTER 15. LEVEL UP

• Ruby on Rails Tutorial by Michael Hartl (free online)

Authorization

We use authentication to verify a user’s registered identity, so we know the
person signing in is the same person who signed up earlier. We use authoriza-
tion to limit access to pages of a web application. Authorization is typically
restricted by role, so users are assigned roles with differing access privileges.
In the simplest implementation, we check if a user has a specific role (such
as administrator) and either allow access or redirect with an “Access Denied”
message. Roles are attributes associated with a user account, and often imple-
mented in a User model.

There are no standard conventions for implementing roles and authorization in
Rails. Developers often implement roles from scratch and use gems such as
Pundit or CanCanCan to implement authorization. For most web applications,
you’ll need to learn how to implement roles and authorization.

Where to Learn

To learn about authorization, start with a free article I’ve written on Rails Au-
thorization. I’ve also written two tutorials which are part of the Capstone Rails
Tutorials series:

• Role-Based Authorization

• Pundit Quickstart Guide

These tutorials explain the code from the rails-devise-roles and rails-devise-
pundit example applications, which you can generate with Rails Composer as
starter applications.

https://www.railstutorial.org/book
https://github.com/elabs/pundit
https://github.com/CanCanCommunity/cancancan
http://railsapps.github.io/rails-authorization.html
http://railsapps.github.io/rails-authorization.html
https://tutorials.railsapps.org/
https://tutorials.railsapps.org/
https://tutorials.railsapps.org/rails-devise-roles/
https://tutorials.railsapps.org/rails-devise-pundit/
https://github.com/RailsApps/rails-devise-roles/
https://github.com/RailsApps/rails-devise-pundit/
https://github.com/RailsApps/rails-devise-pundit/

WHAT TO LEARN NEXT 129

JavaScript

JavaScript is a general-purpose programming language (like Ruby). It is the
language used to manipulate web pages within a browser. Every web devel-
oper needs to know JavaScript. For a Rails application, you might develop ap-
plication features such as auto-complete search forms using a combination of
jQuery and AJAX techniques. For more sophisticated web applications, such as
a single-page application (SPA) that loads in the browser as a single web page
and offers a fluid user experience similar to a desktop application, you’ll need
to learn to use a JavaScript framework such as Ember.js, AngularJS, React, or
Backbone.js. If you intend to specialize as a front-end developer, focusing on
user interaction and the browser interface, you’ll need to become an expert in
JavaScript.

Where to Learn

There are many resources for JavaScript, more than for learning Ruby or Rails.
Here are good curriculum guides:

• Learn JavaScript by Mozilla

• The Odin Project: JavaScript and jQuery

The JavaScript course from Codecademy is universally recommended, as is the
book Eloquent JavaScript.

Other Topics

There is much more to learn before you gain full proficiency as a Rails devel-
oper. Here’s an illustration:

The graphic above is from a blog post, This is Why Learning Rails is Hard,
by Brook Riggio of the Code Fellows code camp in Seattle. You can see the

http://jquery.com/
http://en.wikipedia.org/wiki/Ajax_(programming)
http://emberjs.com/
http://www.angularjs.org/
http://reactjs.com/
http://backbonejs.org/
https://developer.mozilla.org/en-US/learn/javascript
http://www.theodinproject.com/javascript-and-jquery
http://www.codecademy.com/tracks/javascript
http://eloquentjavascript.net/
https://www.codefellows.org/blog/this-is-why-learning-rails-is-hard
https://www.codefellows.org/
https://dgosxlrnzhofi.cloudfront.net/custom_page_images/production/64/page_images/Rails_Competencies.png

130 CHAPTER 15. LEVEL UP

graphic in detail. The first time I saw it, I felt despair. It is a mind map of
all the topics a skilled developer should know. The branches on the right side
are topics that are specific to Rails, as well as general skills required of a Rails
developer, such as Git, the Ruby language, and software engineering compe-
tencies. The branches on the left are general areas of knowledge that would
be understood by any web developer, such as the Unix command line, web
fundamentals, deployment, testing, and SQL. Brook Riggio says, “If this looks
intimidating to you, you’re not alone. . . . Learning Rails is hard because there
are many independent concepts to learn.” I recommend you spend half an hour
each day googling each topic listed on Brook Riggio’s map. In three months,
you’ll have a “big picture” of the knowledge areas that are important to a Rails
developer. You can’t learn everything at once, so dive further into the topics
that interest you. As you tackle new projects, you’ll learn more, and you’ll add
depth to your understanding of each topic on the map.

Curriculum Guides

Brook Riggio’s map gives you a list of topics for learning. But it is helpful
to tackle the topics in a sequence that makes sense. You’ll also need recom-
mendations for the best learning materials. For a curriculum that organizes the
topics you need to become a web developer, I recommend:

• The Odin Project

It is a unique community-driven curriculum, organized by Erik Trautman, the
founder of Viking Code School, that gives you a roadmap of what to learn, and
where to learn it.

Places to Learn

What’s your preferred learning mode? Books, classrooms, videos, online courses?
I guess you’re comfortable with books, so I’ll recommend the best ones for fur-

https://dgosxlrnzhofi.cloudfront.net/custom_page_images/production/64/page_images/Rails_Competencies.png
https://dgosxlrnzhofi.cloudfront.net/custom_page_images/production/64/page_images/Rails_Competencies.png
http://www.theodinproject.com/
http://www.vikingcodeschool.com/

PLACES TO LEARN 131

ther study. But first let’s consider other modes of learning.

Code Camps

Starting in New York City with General Assembly in 2011, and Dev Boot-
camp in San Francisco in 2012, the market for developer education has been
booming. Right now, in San Francisco, there are a dozen organizations offer-
ing immersive code camps, and dozens more in large cities worldwide. These
organizations offer eight- to twelve-week courses, priced around $10,000 to
$12,000 USD. For a list of code camps, see these websites:

• Course Report

• Switch

• Techendo Reviews

Code camps are a great way to become a developer, if you can afford the cost,
and intend to recover the cost by finding a high-paying job as a developer.
The best code camps create an environment of peer-based learning, where you
pair with other students to solve technical problems and build applications, just
as you would in the workplace. Code camps also provide relentless pressure
to learn, from teachers and peers, but primarily from yourself. The quality
and depth of technical knowledge you’ll acquire varies greatly depending on
the code camp curriculum and the individual instructors they’ve hired. All
code camps provide the motivation and social context for accelerated learning,
delivering self-confidence that comes from the encouragement and feedback of
teachers and peers.

If you don’t have money to pay for code camp, all is not lost. You can teach
yourself Rails with books and, with effort, you’ll be good enough to start a
web-based business or look for a job. I recommend that you build your self-
confidence by developing applications on your own. And certainly, find other
learners and study together. Most Rails developers are self-taught, at least

https://generalassemb.ly/
http://devbootcamp.com/
http://devbootcamp.com/
https://www.coursereport.com/
https://www.switchup.org/bootcamps
http://schools.techendo.com/leaderboard

132 CHAPTER 15. LEVEL UP

within the domain of web application development, so code camps or univer-
sity programs are wonderful, if you can afford the cost, but not essential.

Other Classrooms

It’s unusual to find a university or community college that offers classes in
web development with Rails. In the US, university computer science programs
focus on analytical reasoning and the conceptual underpinnings required for
advanced research in the field. Some community colleges teach web devel-
opment but it is difficult for the schools to find experienced Rails instructors,
especially given the disparity in salaries between teaching and software engi-
neering. However, universities or community colleges are good places to meet
other students and form a study group, to provide social support for learning.

Classes taught in the community, often free or low-cost, are surprisingly good
places to learn. Teachers and organizers are highly motivated and may be ex-
perienced Rails developers giving back to the community. Community-based
classes or workshops are often poorly publicized, so you’ll have to search hard
for these courses.

Women have a good chance of finding peer organizations that teach program-
ming and web development with Rails. Start by looking at the course schedules
for these organizations:

• Rails Girls

• RailsBridge

• Girl Develop It

• Women Who Code

These organizations only offer introductory classes, so you’ll have to study on
your own for deeper knowledge. Short courses such as weekend workshops are
valuable because you can find other students who want to start a study group.

http://railsgirls.com/
http://railsbridge.org/
http://www.girldevelopit.com/
https://www.womenwhocode.com/

PLACES TO LEARN 133

Online Courses

It’s no longer necessary to go to a classroom to go to school. Online courses
range from online code camps that provide videos and one-on-one coaching, to
websites that offer a selection of pre-recorded videos packaged as a course, to
MOOCs (massive open online courses) offered by consortiums of universities.

Chasing the runaway success of classroom-based code camps, you’ll find a
number of companies that offer code schools delivered online. Here are a few
that combine videos with personal coaching:

• Flatiron School Online Campus

• Bloc.io

• CareerFoundry

• Code Union

• Launch School (formerly Tealeaf Academy)

• The Firehose Project

• Thinkful

• Thoughtbot Upcase

• Viking Code School

The online code schools provide some of the benefits, specifically curriculum
and coaching, of the classroom-based code camps, at a fraction of the cost.
Videos, homework projects, and online mentors can’t reproduce the intense
peer-based learning of the classroom code camps. But you don’t have to quit
your job or move to a another city.

MOOCs provide university-level education online. You can search a database
of MOOCs at the Class Central website. I recommend the edX course:

http://en.wikipedia.org/wiki/Massive_open_online_course
https://flatironschool.com/campuses/online/
http://www.bloc.io/
http://www.careerfoundry.com/
http://codeunion.io/
http://www.gotealeaf.com/
http://www.thefirehoseproject.com/
http://www.thinkful.com/
https://upcase.com/subscribe
http://www.vikingcodeschool.com/
https://www.class-central.com/

134 CHAPTER 15. LEVEL UP

• CS169.1x Engineering Software as a Service

It is a nine week class, it is free, and it is taught four times a year. It is based on a
software engineering class taught at the University of California, Berkeley. The
professors have written their own textbook to accompany the class, Engineering
Software as a Service: An Agile Approach Using Cloud Computing. The class
is very worthwhile, if you have the time and it fits your schedule.

Videos

Online code camps and MOOCs provide supervised learning, combining videos
with access to coaches or instructors. If you want self-paced study, without ac-
cess to a coach, you’ll find hundreds of videos online, varying greatly in quality.
There’s one big problem with videos: The ones that are easiest to find are often
outdated. It is very difficult for producers to revise videos and, as you know,
Rails changes often.

Michael Hartl, author of the Ruby on Rails Tutorial, a book I recommend,
offers screencasts to accompany the book. The cost is $149 USD.

Go Rails offers dozens of intermediate and advanced screencasts. Chris Oliver
started producing the videos in mid-2014, so they are newer than most Rails
screencasts you’ll find on the web. These are task-focused videos, good for
supplementing a book or course. Some are free, some are available with a $19
USD subscription.

RailsCasts seems to always be recommended by Rails developers, and these
screencasts were once among the best ways to learn about Rails. RailsCasts
creator Ryan Bates left the community in mid-2013 and, unfortunately, many
of the screencasts are no longer current or relevant. Still, they are worth a look.

Lynda.com offers a Ruby on Rails 4 Essential Training 12 hour video series
at a cost of $25 USD for a monthly subscription. It covers Rails 4.0 and is an
adequate introduction at a very low cost.

Thoughtbot Upcase, formerly known as ThoughtBot Learn Prime, is a program

https://www.edx.org/course/uc-berkeleyx/uc-berkeleyx-cs169-1x-engineering-3811#.VCIWQCtdWJk
http://www.saasbook.info/
http://www.saasbook.info/
https://www.railstutorial.org/
https://gorails.com/
http://railscasts.com/
http://www.lynda.com/
http://www.lynda.com/Ruby-Rails-tutorials/Ruby-Rails-4-Essential-Training/139989-2.html
https://upcase.com/subscribe

PLACES TO LEARN 135

from the respected ThoughtBot consulting firm that provides videos for $49
USD monthly, with coding exercises and a personal coach at a higher price.
You can see the Upcase curriculum for an overview. The program is well-
regarded.

Code School is famous for its Rails for Zombies course, and the company of-
fers a dozen additional courses that cover both Ruby and Rails. The courses
combine instructional videos with in-browser coding exercises at a cost of $29
USD per month. The quality is high, the videos are current, and the company
tries to make the topics entertaining.

Pragmatic Studio, publishers of many high-quality Rails books, offers a series
of 26 videos for $179 USD. The course is a solid introduction to Rails.

Baserails.com is a video series, available with a $25 USD monthly subscription,
that shows you how to build an application. It’s good if you want practice
before building something on your own.

One Month Rails is an 8 hour video series aimed at beginners. It’s priced at
$99 (though you can find discount codes if you search). If you’ve read Book
Two, you should skip One Month Rails and focus on intermediate-level books
and courses.

Treehouse is a subscription site ($25 USD per month) with a big budget and
many course offerings. The courses on Ruby and Rails don’t provide enough
depth to take you beyond a beginner level.

Tuts+ offers several Rails courses. Some are out of date.

Codecademy offers a series of courses that combine videos with interactive
quizzes on Ruby and JavaScript. The course on JavaScript is often recom-
mended. However, the format is very much classroom-oriented without practi-
cal context.

Udemy offers a range of video courses on Ruby and Rails. This is crowd-
sourced content (like YouTube) and the quality varies greatly. If you’ve found
a great course on Udemy, email me and I’ll list it here in the next version of the
book.

https://upcase.com/rails
https://www.codeschool.com/
https://www.codeschool.com/courses/rails-for-zombies-redux
http://pragmaticstudio.com/rails
https://www.baserails.com/
https://onemonth.com/courses/one-month-rails
http://teamtreehouse.com/library/topic:ruby
http://tutsplus.com/courses_search?view=&search%5Bkeywords%5D=rails
http://www.codecademy.com/
http://www.codecademy.com/en/tracks/ruby
http://www.codecademy.com/en/tracks/javascript
https://www.udemy.com/courses/search/?q=ruby+on+rails

136 CHAPTER 15. LEVEL UP

Skillshare is another source of crowd-sourced video courses. Many offerings
on Ruby and Rails are out of date.

As you can see from the long list, videos are plentiful. Avoid the old ones.

Books

At the beginning of this chapter, I recommended Easy Active Record for Rails
Developers by Jason Gilmore because it is focused on databases and Rails, the
next thing you need to study. Other books deserve mention.

One book stands out among all:

• Ruby on Rails Tutorial by Michael Hartl (free online)

More Rails developers read, and recommend, Michael Hartl’s book than any
other. For you, after reading this book and Easy Active Record for Rails Devel-
opers, Michael Hartl’s book will be a review of what you’ve learned. I hope you
will breeze through it, given the fundamental concepts you’ve already learned.

Two other books on Rails are notable:

• Agile Web Development with Rails 5 by Sam Ruby

• The Rails 5 Way by Obie Fernandez

Both are dense, comprehensive, and authoritative. In my opinion, you should
start building Rails applications before digging into these books. As you begin
building applications, dip into any of these books for further explanation and
insight.

I recommend the book by Justin Weiss, Practicing Rails: Learn Rails Without
Being Overwhelmed. The book provides useful technical tips and tricks, such
as techniques for debugging, but the focus of the book is overcoming chal-
lenges that new developers commonly face. You’ll find advice about keeping

http://www.skillshare.com/
http://easyactiverecord.com/
http://easyactiverecord.com/
https://www.railstutorial.org/book
http://easyactiverecord.com/
http://easyactiverecord.com/
https://pragprog.com/book/rails5/agile-web-development-with-rails-5
https://leanpub.com/tr5w
https://www.justinweiss.com/book/
https://www.justinweiss.com/book/

A FINAL WORD 137

up with the Rails community and managing time and motivation when learn-
ing Rails, as well as overcoming “the tutorial gap” to begin building your own
applications.

Several other books should be on your reading list to improve your skill:

Rebuilding Rails by Noah Gibbs. If you like to discover how things work,
you’ll gain a deep insight into Rails from Noah Gibbs’s book, as he shows you
how to build a framework like Rails from scratch.

Practical Object-Oriented Design in Ruby by Sandi Metz. A must-read that
teaches the techniques of master programmers.

In addition to the books listed here, I recommended several books to help
you learn the Ruby programming language at the the end of the chapter, “Just
Enough Ruby.”

A Final Word

Keep in mind the reason you’re here. You’re learning Rails so that you can build
applications. I’ve given you a book that is dense with links and recommenda-
tions for further resources. I’ve met many students who are overwhelmed with
all these resources. Some people postpone building anything because there is
so much more to learn. Don’t be that person. Skip everything I’ve recom-
mended in this chapter and just get started building. When you need to learn
more, you can come back and dig deeper.

Good luck with building the application in Book Two. I hope you like my
approach and writing style so that you’ll continue with the Capstone Rails Tu-
torials.

http://rebuilding-rails.com/
http://www.sandimetz.com/products
https://tutorials.railsapps.org/
https://tutorials.railsapps.org/

138 CHAPTER 15. LEVEL UP

Figure 15.1: Rails Competencies.

Chapter 16

Version Notes

If you’ve gotten this book directly from my website, you have the most recent
version of the book. If you’ve gotten your copy of the book elsewhere, you
may have an older version that doesn’t have the newest updates.

You’ll find the version number and release date on the first page of this book
(under the book title). Check the learn-rails GitHub repository to find out if
you have the newest version of the book. The README page on the GitHub
repo always shows the most recent version number for the book and the tutorial
application.

Here are the changes I’ve made.

Version 4.0.0

Version 4.0.0 was released November 25, 2016

Revisions throughout. Fixed broken links. Added links to videos.

Removed references to Nitrous.io because Nitrous.io is out of business.

139

https://github.com/RailsApps/learn-rails
https://www.nitrous.io/

140 CHAPTER 16. VERSION NOTES

Version 3.0.0

Version 3.0.0 was released January 14, 2016

Extensive revision throughout the book, and the length of the book increased,
so the book is now two books. Book One contains the introductory and self-
help chapters and can be read without access to a computer. Book Two contains
the step-by-step tutorial and requires use of a computer.

Version 2.2.2

Version 2.2.2 was released October 30, 2015

In the “Front-End Framework” chapter, updated filename to 1st_load_framework.css.scss
from framework_and_overrides.css.scss to reflect a change in the rails_layout
gem.

Version 2.2.1

Version 2.2.1 was released September 19, 2015

Updated references to Ruby from version 2.2.0 to 2.2.3.

Updated references to Rails 4.2.0 to Rails 4.2.4.

Updated Visitor model subscribe method for the new Gibbon 2.0 API.

Recommending Cloud9 instead of Nitrous.io because Nitrous.io is no longer
free.

https://c9.io/
https://www.nitrous.io/

VERSION 2.2.0 141

Version 2.2.0

Version 2.2.0 was released June 6, 2015

For Amazon customers, added an offer to access the online version or download
a PDF at learn-rails.com.

Google now requires use of OAuth 2.0 for application access to Google Drive.
The implementation is considerably more complex than the previous imple-
mentation using a Gmail address and password. I’ve dropped the “Spreadsheet
Connection” chapter.

Minor clarification in the “Layout and Views” chapter.

Version 2.1.6

Version 2.1.6 was released March 17, 2015

Remove references to the Thin web server in the “Deploy” chapter.

Correct version number for gem ’sass-rails’ in various Gemfile listings.
Fixes issue 49 and an error “Sass::SyntaxError - Invalid CSS” when the Foun-
dation front-end framework is used.

In the “Testing” chapter, the file test/integration/home_page_test.rb was miss-
ing require ’test_helper’.

Updated “Rails Composer” chapter to describe new options.

Minor improvements and corrections of typos.

Version 2.1.5

Version 2.1.5 was released March 4, 2015

http://learn-rails.com/
https://github.com/RailsApps/learn-rails/issues/49

142 CHAPTER 16. VERSION NOTES

Use the Ruby 1.9 hash syntax in the validates_format_of :email state-
ment.

Minor improvements and corrections of typos.

Version 2.1.4

Version 2.1.4 was released January 3, 2015

Updated references to Ruby from version 2.1.5 to 2.2.0.

Specify the “v0” version of the google_drive gem in the “Spreadsheet Connec-
tion” chapter.

Version 2.1.3

Version 2.1.3 was released December 25, 2014

Updated references to Rails 4.1.8 to Rails 4.2.0.

Version 2.1.2

Version 2.1.2 was released December 4, 2014

Released for sale as a Kindle book on Amazon, with new cover art (same cat,
though).

RailsApps Tutorials now named the Capstone Rails Tutorials.

Updated references to Ruby from version 2.1.3 to 2.1.5.

Updated references to Rails 4.1.6 to Rails 4.1.8 (minor releases with bug and
security fixes).

https://tutorials.railsapps.org/

VERSION 2.1.1 143

Removed link to the (now defunct?) Lowdown web application in the “Plan
Your Product” chapter.

Changes to the “Asynchronous Mailing” section of “Send Mail” chapter to de-
scribe Active Job in Rails 4.2.

Minor improvements to the “Dynamic Home Page,” “Deploy,” “Configure,”
“Troubleshoot,” and “Create the Application” chapters.

Version 2.1.1

Version 2.1.1 was released October 22, 2014

Minor rewriting for clarity.

Updated “Precompile Assets” section of the “Deploy” chapter.

Mentioned explainshell.com in the “Get Started” chapter.

Mentioned Zeal as a Linux alternative to Dash.

Recommended book Practicing Rails by Justin Weiss.

Version 2.1.0

Version 2.1.0 was released October 12, 2014

Updated references to Ruby from version 2.1.1 to 2.1.3.

Updated references to Rails 4.1.1 to Rails 4.1.6 (minor releases with bug and
security fixes).

Four new chapters:

• “Testing”

• “Rails Composer”

http://lowdownapp.com/
http://explainshell.com/
http://zealdocs.org/
http://kapeli.com/dash
https://www.justinweiss.com/book/

144 CHAPTER 16. VERSION NOTES

• “Crossing the Chasm”

• “Level Up”

Use ActiveModel instead of the activerecord-tableless gem.

In the “Configuration” chapter, add a note to use spaces (not tabs) in the con-
fig/secrets.yml file.

Updated “Gems” chapter to add a troubleshooting note to the “Install the Gems”
section (about errors with the Nokogiri gem).

Added a section on “Multiple Terminal Windows” to the “Create the Applica-
tion” chapter.

In the “Get Help When You Need It” chapter, updated the list of recommended
newsletters, replaced rubypair.com with codermatch.me, and added a section
on code review. Removed reference to defunct Rails Development Directory.

Version 2.0.2

Version 2.0.2 was released May 6, 2014

Updated references to Rails 4.1.0 to Rails 4.1.1 (a minor release with a security
fix).

For Nitrous.io users, clarify that “http://localhost:3000/” means the Preview
browser window.

Update “Gems” chapter, section “Where Do Gems Live?” to add more expla-
nation.

Minor change to code in the “Mailing List” chapter, setting ‘mailchimp_api_key’
explicitly when instantiating Gibbon, for easier troubleshooting.

https://github.com/softace/activerecord-tableless
http://rubypair.com/
http://www.codermatch.me/
http://www.railsdevelopment.com/

VERSION 2.0.1 145

Version 2.0.1

Version 2.0.1 was released April 16, 2014

Minor updates for Rails 4.1.0. Mostly small changes to the “Configure” and
“Front-End Framework” chapters.

Added an explanation that, in the config/secrets.yml file, domain_name doesn’t
have to be kept secret and set as a Unix environment variable.

Added a hint about passwords that use punctuation marks (plus a completely
irrelevant note about profanitype).

Replaced Rails.application.secrets.gmail_usernamewith Rails.application.secrets.email_provider_username.
Also replaced gmail_password with email_provider_password. Just
trying to make things a little more generic in case Gmail is not used as a
provider.

Added a section explaining the horrid details of the config.assets.precompile
configuration setting in the config/application.rb file. Please convey my dis-
pleasure to those responsible for subjecting beginners to this travesty.

In the “Deploy” chapter, restored RAILS_ENV=production rake assets:precompile
because Rails 4.1.0 no longer barfs on this.

Added resources to the “Get Help When You Need It” chapter.

Minor rewriting of the introduction.

Version 2.0.0

Version 2.0.0 was released April 8, 2014

Updated references to Ruby from version 2.1.0 to 2.1.1.

Updated the book to Rails 4.1. The application name is no longer used in the
config/routes.rb file.

146 CHAPTER 16. VERSION NOTES

Rails 4.1 changes the app/assets/stylesheets/application.css.scss file. Up-
dated the “Front-End Framework” chapter. Also expanded the explanation of
the Foundation grid.

In Rails 4.1, configuration variables are set in the config/secrets.yml file. The
Figaro gem is dropped, along with the config/application.yml file. Updated
the “Configure” chapter and references to configuration variables throughout
the book.

In the “Deploy” chapter, changed RAILS_ENV=production rake assets:precompile
to rake assets:precompile to avoid the error “database configuration does
not specify adapter.”

Updated “The Parking Structure” chapter with comments about “Folders of
Future Importance” that experienced developers often use: test/, spec/, fea-
tures/, policies/, and services/. Updated the “Spreadsheet Connection” chapter
to mention service-oriented architectures (SOA).

Extended the section on “Limitations of Metaphors” in the “Just Enough Ruby”
chapter to include the example of gender when modeling a person.

Minor rewriting for clarity throughout.

Version 1.19

Version 1.19 was released February 1, 2014

Updated the book to use Foundation 5.0. Foundation 5.0.3 was released Jan-
uary 15, 2014 (earlier versions 5.0.1 and 5.0.2 were incompatible with Rails
Turbolinks and the Rails asset pipeline). Changed the Gemfile to remove
gem ’compass-rails’ and replace gem ’zurb-foundation’ with gem
’foundation-rails’. Updated a line in the “Front-End Framework” chap-
ter for Foundation 5.0:

VERSION 1.18 147

$ rails generate layout foundation5 --force

The files navigation.html.erb and application.html.erb are changed for Foun-
dation 5.0. The Bootstrap front-end framework is now independent of Twit-
ter, so I call it “Bootstrap” not “Twitter Bootstrap.” Revised the chapter “Just
Enough Ruby” to incorporate suggestions from technical editor Pat Shaugh-
nessy. Revised the chapter “Request and Response” to incorporate suggestions
from technical editor Kirsten Jones. Minor rewriting for clarity throughout.

Version 1.18

Version 1.18 was released January 10, 2014

Updated references to Ruby from version 2.0.0 to 2.1.0. Changed one line in
the “Front-End Framework” chapter to accommodate a change in the rails_layout
gem version 1.0.1. The command was:

$ rails generate layout foundation4 --force

Changed to:

$ rails generate layout:install foundation4 --force

Updated the “Configure” chapter to add ActionMailer configuration values to
the file config/environments/development.rb.

Version 1.17

Version 1.17 was released December 21, 2013

148 CHAPTER 16. VERSION NOTES

Updated Rails version from 4.0.1 to 4.0.2 .

Changed Gemfile to remove gem ’compass-rails’, ’> 2.0.alpha.0’
and replace it with gem ’compass-rails’, ’> 1.1.2’. The 2.0.alpha.0
version was yanked from the RubyGems server. The compass-rails gem is
needed for Foundation 4.3. It will not be needed for Foundation 5.0.

Changed Gemfile to replace gem ’zurb-foundation’with gem ’zurb-foundation’,
’> 4.3.2’. Foundation 5.0 will require gem ’foundation-rails’ but we
can’t use it until an incompatibility with Turbolinks is resolved. So we will
stick with Foundation 4.3.2 for now.

Revised code in the “Analytics” chapter. Using ready page:change instead
of page:load to accommodate Turbolinks. Updated the segmentio.js file to
use a new tracking script from Segment.io. Updated instructions for setting
up Google Analytics tracking on Segment.io. Added concluding paragraphs
“Making Mr. Kadigan Happy” to the “Analytics” chapter.

Minor clarification in the “Front-End Framework” chapter to explain that the
navigation bar won’t show a dropdown menu until the next chapter, when we
add navigation links.

Minor clarification in the “Spreadsheet Connection” chapter to explain that
Google may block access if you attempt access from a new and different com-
puter (including Nitrous.io).

Added cat names in the “Credits and Comments” chapter.

Revised “Getting Help” chapter and added “Version Notes” chapter.

Minor clarifications, plus fixes for various typos and insignificant errors.

https://github.com/zurb/foundation/issues/3642

Chapter 17

Credits and Comments

Was the book useful to you? Follow @rails_apps on Twitter and tweet some
praise. I’d love to know you were helped out by the tutorial.

You can find me on Facebook or Google+. I’m happy to connect if you want to
stay in touch.

If you’d like to recommend the book to others, the landing page for the book is
here:

• http://learn-rails.com/learn-ruby-on-rails.html

I’d love it if you mention the book online, whether it is a blog post, Twitter,
Facebook, or online forums. Recommending the book with a link makes it
easier for people to find the book.

Credits

The book was created with the encouragement, financial support, and editorial
assistance of hundreds of people in the Rails community.

Daniel Kehoe wrote the book and implemented the application.

149

http://twitter.com/rails_apps
https://www.facebook.com/daniel.kehoe.sf
https://plus.google.com/+DanielKehoe/
http://learn-rails.com/learn-ruby-on-rails.html

150 CHAPTER 17. CREDITS AND COMMENTS

Financial Backers

The following individuals provided financial contributions of over $50 to help
launch the book. Please join me in thanking them for their encouragement and
support.

Al Zimmerman, Alan W. Smith, Alberto A. Colón Viera, Andrew Terry, Avi
Flombaum, Brian Hays, Charles Treece, Dave Doolin, Denzil Villarico, Derek
Rockwell, Eito Katagiri, Evan Sparkman, Frank Castle, Fred Dixon, Fred Schoen-
eman, Gant Laborde, Gardner Monks, Gerard de Brieder, GoodWorksOnEarth.org,
Hanspeter Leupin, Harald Lazardzig, Harsh Patel, James Bond, Jared Koumen-
tis, Jason Landry, Jeff Whitmire, Jesse House, Joe Wilmoth Jr., John Shannon,
Joost Baaij, Juan Cristobal Pazos, Kathleen Sidenblad, Laird Hayward, Lo-
gan Hasson, Ludovic Kuty, Mark Gilbert, Matt Esterly, Mike Gilbert, Niko
Roberts, Norman Cohen, Paul Philippov, Robert Nadar, Rogier Hof, Ross Kin-
ney, Ruben Calzadilla, Stephane Moreau, Susan Wilson, Sven Fuchs, Thomas
Nitsche, Tom Michel, Youn Shin Kang, Yuen Lock

Editors and Proofreaders

Dozens of volunteers offered corrections and made suggestions, from fixing
typos to advice about organizing the chapters.

Alberto Dubois Ribó, Alex Finnarn, Alex Zielonko, Alexandru Muntean, Alexey
Dotokin, Alexey Ershov, André Arko, Andreas Basurto, Ben Swee, Brandon
Schabel, Cam Skene, Daniella Zimmermann, Dapo Babatunde, Dave Levine,
Dave Mox, David Kim, Duany Dreyton Bezerra Sousa, Erik Trautman, Erin
Nedza, Flavio Bordoni, Fritz Rodriguez Jr, Hendri Firmana, Ishan Shah, James
Hamilton, Jasna Vukovic, Jeremy Schneider, Joanne Daudier, Joel Dezenzio,
Jonah Ruiz, Jonathan Lai, Jonathan Miller, Jordan Stone, Joreal Whitfield, Josh
Morrow, Joyce Hsu, Julia Mokus, Julie Hamwood, Jutta Frieden, Laura Pierson
Wadden, Marc Ignacio, Mark D. Blackwell, Mark Everhart, Michael Wong,
Miguel Herrera, Mike Janicki, Miran Omanovic, Neha Jain, Norman Cohen,
Oana Sipos, Peter Rangelov, Richard Afolabi, Robin Paul, Roderick Silva,

COMMENTS 151

Sakib Ash, Sebastian Lobato Genco, Silvia Obajdin, Stas Sucov, Stefan Stre-
ichsbier, Sven Fuchs, Tam Eastley, Tim Goshinski, Timothy Jones, Tom Con-
nolly, Tom Michel, Tomas Olivares, Verena Brodbeck, Will Schive, William
Yorgan, Zachary Davy

Photos

Images provided by the lorempixel.com service are used under the Creative
Commons license. Visit the Flickr accounts of the photographers to learn more
about their work:

• photo of a white cat by Tomi Tapio

• photo of a cat by Steve Garner

• photo of a cat by Ian Barbour

The photo of a fluffy white cat by Tomi Tapio is used in the application.

Comments

I regularly update the book. Your comments and suggestions for improvements
are welcome.

Feel free to email me directly at daniel@danielkehoe.com.

Are you stuck with code that won’t work? Stack Overflow provides a question-
and-answer forum for readers of this book. Use the tag “learn-ruby-on-rails”
or “railsapps” when you post your question.

Found a bug in the tutorial application? Please create an issue on GitHub.

http://lorempixel.com/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
http://www.flickr.com/photos/tomitapio/4305303148/
http://www.flickr.com/people/22032337`N02/
http://www.flickr.com/people/barbourians/
http://www.flickr.com/photos/tomitapio/4305303148/
mailto:daniel@danielkehoe.com
http://stackoverflow.com/questions/tagged/learn-ruby-on-rails
http://github.com/RailsApps/learn-rails/issues

	Free Offer and More
	Get Book Two
	Get the Videos
	The Online and Ebook Versions

	Introduction
	Is It for You?
	What To Expect
	What's in Book One
	What's in Book Two
	A Warning About Links
	What Comes Next
	Versions
	Staying In Touch
	A Note to Reviewers and Teachers
	Using the Book in the Classroom
	Let's Get Started

	Concepts
	How the Web Works
	Programming Languages
	Ruby and JavaScript
	JavaScript and JQuery
	JQuery
	Full-Stack JavaScript

	Front and Back Ends
	Rails 5
	JavaScript Frameworks
	AngularJS and Ember.js
	React

	What is Rails?
	Rails as a Community
	Six Perspectives on Rails
	Web Browser Perspective
	Programmer Perspective
	Software Architect Perspective
	Gem Hunter Perspective
	Time Traveler Perspective
	Tester Perspective

	Understanding Stacks
	Full Stack
	Rails Stacks

	Why Rails?
	Why Ruby?
	Why Rails?
	Rails Guiding Principles
	Rails is Opinionated
	Rails is Omakase
	Convention Over Configuration
	Don't Repeat Yourself

	Where Rails Gets Complicated
	When Rails has No Opinion
	Omakase But Substitutions Are Allowed
	Conventions or Magic?
	DRY to Obscurity

	Rails Challenges
	A List of Challenges
	It is difficult to install Ruby.
	Rails is a nightmare on Windows.
	Why do I have to learn Git? It is difficult.
	Why worry about versions?
	Do I really need to learn about testing?
	Rails error reporting is cryptic.
	There is too much magic.
	It is difficult to grasp MVC and REST.
	Rails contains lots of things I don't understand.
	There is too much to learn.
	It is difficult to find up-to-date advice.
	It is difficult to know what gems to use.
	Rails changes too often.
	It is difficult to transition from tutorials to building real applications.
	I'm not sure where the code goes.
	People like me don't go into programming.

	Get Help When You Need It
	Getting Help With Rails
	References
	RailsGuides
	Cheatsheets
	API Documentation

	Meetups, Hack Nights, and Workshops
	Pair Programming
	Pairing With a Mentor
	Code Review
	Staying Up-to-Date

	Plan Your Product
	Product Owner
	User Stories
	Wireframes and Mockups
	Graphic Design
	Software Development Process
	Behavior-Driven Development

	Manage Your Project
	To-Do List
	Kanban
	Agile Methodologies

	Mac, Linux, or Windows
	Your Computer
	Hosted Computing
	Installing Ruby
	MacOS
	Ubuntu Linux
	Hosted Computing
	Windows

	Terminal Unix
	The Terminal
	Unix Commands Explained
	Getting Fancy With the Prompt
	Learning Unix Commands
	Exit Gracefully
	Structure of Unix Commands
	Prompt
	Command
	Option
	Argument

	Quick Guide to Unix Commands
	cd
	pwd
	ls
	Hidden Files and Folders
	Dots
	open
	mkdir
	touch
	mv
	cp
	rm
	Removing a Folder
	The Mouse and the Command Line
	Arrow Keys
	Tab Completion

	Why Abbreviations?

	Text Editor
	You Don't Need an IDE
	Which Text Editor
	Install Atom
	Other Choices
	How To Use a Text Editor

	Editor Shell Command

	Learn Ruby
	Ruby Language Literacy
	Resources for Learning Ruby
	Collaborative Learning
	Online Tutorials
	Books
	Newsletters
	Screencasts

	Crossing the Chasm
	Facing the Gap
	Bridging the Gap With a Strategy
	Bridging the Gap With Social Practice
	Making an Effort
	Conversation Starters
	Pay It Forward

	Finding a Mentor
	Creating Mentorship Moments
	Online
	GitHub
	Meetups
	Workshops and Classes
	On the Job

	What's Next
	Entrepreneurs
	Lifestyle Businesses and Personal Projects

	Build Applications

	Level Up
	What to Learn Next
	Databases
	Testing
	Authentication and Sessions
	Authorization
	JavaScript
	Other Topics
	Curriculum Guides

	Places to Learn
	Code Camps
	Other Classrooms
	Online Courses
	Videos
	Books

	A Final Word

	Version Notes
	Version 4.0.0
	Version 3.0.0
	Version 2.2.2
	Version 2.2.1
	Version 2.2.0
	Version 2.1.6
	Version 2.1.5
	Version 2.1.4
	Version 2.1.3
	Version 2.1.2
	Version 2.1.1
	Version 2.1.0
	Version 2.0.2
	Version 2.0.1
	Version 2.0.0
	Version 1.19
	Version 1.18
	Version 1.17

	Credits and Comments
	Credits
	Financial Backers
	Editors and Proofreaders
	Photos

	Comments

