

 [image: cover]

 Learn Ruby on Rails: Book One
Version 4.0.0, 25 November 2016
Daniel Kehoe

Contents
	Chapter 1 Free Offer and More
		1.1 Get Book Two
	1.2 Get the Videos
	1.3 The Online and Ebook Versions

	Chapter 2 Introduction
		2.1 Is It for You?
	2.2 What To Expect
		2.2.1 What’s in Book One
	2.2.2 What’s in Book Two
	2.2.3 A Warning About Links
	2.2.4 What Comes Next
	2.2.5 Versions
	2.2.6 Staying In Touch
	2.2.7 A Note to Reviewers and Teachers
	2.2.8 Using the Book in the Classroom
	2.2.9 Let’s Get Started

	Chapter 3 Concepts
		3.1 How the Web Works
	3.2 Programming Languages
	3.3 Ruby and JavaScript
	3.4 JavaScript and JQuery
		3.4.1 JQuery
	3.4.2 Full-Stack JavaScript

	3.5 Front and Back Ends
	3.6 Rails 5
	3.7 JavaScript Frameworks
		3.7.1 AngularJS and Ember.js
	3.7.2 React

	Chapter 4 What is Rails?
		4.1 Rails as a Community
	4.2 Six Perspectives on Rails
		4.2.1 Web Browser Perspective
	4.2.2 Programmer Perspective
	4.2.3 Software Architect Perspective
	4.2.4 Gem Hunter Perspective
	4.2.5 Time Traveler Perspective
	4.2.6 Tester Perspective

	4.3 Understanding Stacks
		4.3.1 Full Stack
	4.3.2 Rails Stacks

	Chapter 5 Why Rails?
		5.1 Why Ruby?
	5.2 Why Rails?
	5.3 Rails Guiding Principles
		5.3.1 Rails is Opinionated
	5.3.2 Rails is Omakase
	5.3.3 Convention Over Configuration
	5.3.4 Don’t Repeat Yourself

	5.4 Where Rails Gets Complicated
		5.4.1 When Rails has No Opinion
	5.4.2 Omakase But Substitutions Are Allowed
	5.4.3 Conventions or Magic?
	5.4.4 DRY to Obscurity

	Chapter 6 Rails Challenges
		6.1 A List of Challenges
		6.1.1 It is difficult to install Ruby.
	6.1.2 Rails is a nightmare on Windows.
	6.1.3 Why do I have to learn Git? It is difficult.
	6.1.4 Why worry about versions?
	6.1.5 Do I really need to learn about testing?
	6.1.6 Rails error reporting is cryptic.
	6.1.7 There is too much magic.
	6.1.8 It is difficult to grasp MVC and REST.
	6.1.9 Rails contains lots of things I don’t understand.
	6.1.10 There is too much to learn.
	6.1.11 It is difficult to find up-to-date advice.
	6.1.12 It is difficult to know what gems to use.
	6.1.13 Rails changes too often.
	6.1.14 It is difficult to transition from tutorials to building real applications.
	6.1.15 I’m not sure where the code goes.
	6.1.16 People like me don’t go into programming.

	Chapter 7 Get Help When You Need It
		7.1 Getting Help With Rails
	7.2 References
		7.2.1 RailsGuides
	7.2.2 Cheatsheets
	7.2.3 API Documentation

	7.3 Meetups, Hack Nights, and Workshops
	7.4 Pair Programming
	7.5 Pairing With a Mentor
	7.6 Code Review
	7.7 Staying Up-to-Date

	Chapter 8 Plan Your Product
		8.1 Product Owner
	8.2 User Stories
	8.3 Wireframes and Mockups
	8.4 Graphic Design
	8.5 Software Development Process
	8.6 Behavior-Driven Development

	Chapter 9 Manage Your Project
		9.1 To-Do List
	9.2 Kanban
	9.3 Agile Methodologies

	Chapter 10 Mac, Linux, or Windows
		10.1 Your Computer
	10.2 Hosted Computing
	10.3 Installing Ruby
		10.3.1 MacOS
	10.3.2 Ubuntu Linux
	10.3.3 Hosted Computing
	10.3.4 Windows

	Chapter 11 Terminal Unix
		11.1 The Terminal
	11.2 Unix Commands Explained
	11.3 Getting Fancy With the Prompt
	11.4 Learning Unix Commands
	11.5 Exit Gracefully
	11.6 Structure of Unix Commands
		11.6.1 Prompt
	11.6.2 Command
	11.6.3 Option
	11.6.4 Argument

	11.7 Quick Guide to Unix Commands
		11.7.1 cd
	11.7.2 pwd
	11.7.3 ls
	11.7.4 Hidden Files and Folders
	11.7.5 Dots
	11.7.6 open
	11.7.7 mkdir
	11.7.8 touch
	11.7.9 mv
	11.7.10 cp
	11.7.11 rm
	11.7.12 Removing a Folder
	11.7.13 The Mouse and the Command Line
	11.7.14 Arrow Keys
	11.7.15 Tab Completion

	11.8 Why Abbreviations?

	Chapter 12 Text Editor
		12.1 You Don’t Need an IDE
	12.2 Which Text Editor
		12.2.1 Install Atom
	12.2.2 Other Choices
	12.2.3 How To Use a Text Editor

	12.3 Editor Shell Command

	Chapter 13 Learn Ruby
		13.1 Ruby Language Literacy
	13.2 Resources for Learning Ruby
		13.2.1 Collaborative Learning
	13.2.2 Online Tutorials
	13.2.3 Books
	13.2.4 Newsletters
	13.2.5 Screencasts

	Chapter 14 Crossing the Chasm
		14.1 Facing the Gap
	14.2 Bridging the Gap With a Strategy
	14.3 Bridging the Gap With Social Practice
		14.3.1 Making an Effort
	14.3.2 Conversation Starters
	14.3.3 Pay It Forward

	14.4 Finding a Mentor
	14.5 Creating Mentorship Moments
		14.5.1 Online
	14.5.2 GitHub
	14.5.3 Meetups
	14.5.4 Workshops and Classes
	14.5.5 On the Job

	14.6 What’s Next
		14.6.1 Entrepreneurs
	14.6.2 Lifestyle Businesses and Personal Projects

	14.7 Build Applications

	Chapter 15 Level Up
		15.1 What to Learn Next
		15.1.1 Databases
	15.1.2 Testing
	15.1.3 Authentication and Sessions
	15.1.4 Authorization
	15.1.5 JavaScript
	15.1.6 Other Topics
	15.1.7 Curriculum Guides

	15.2 Places to Learn
		15.2.1 Code Camps
	15.2.2 Other Classrooms
	15.2.3 Online Courses
	15.2.4 Videos
	15.2.5 Books

	15.3 A Final Word

	Chapter 16 Version Notes
		16.1 Version 4.0.0
	16.2 Version 3.0.0
	16.3 Version 2.2.2
	16.4 Version 2.2.1
	16.5 Version 2.2.0
	16.6 Version 2.1.6
	16.7 Version 2.1.5
	16.8 Version 2.1.4
	16.9 Version 2.1.3
	16.10 Version 2.1.2
	16.11 Version 2.1.1
	16.12 Version 2.1.0
	16.13 Version 2.0.2
	16.14 Version 2.0.1
	16.15 Version 2.0.0
	16.16 Version 1.19
	16.17 Version 1.18
	16.18 Version 1.17

	Chapter 17 Credits and Comments
		17.1 Credits
		17.1.1 Financial Backers
	17.1.2 Editors and Proofreaders
	17.1.3 Photos

	17.2 Comments

 Chapter 1 Free Offer and More

You are reading Book One, which introduces basic concepts and gives you the background you need
to succeed.

Book One is 99 cents on Amazon and free on my own site. I’ll also tell you how to get Book Two plus videos and advanced tutorials.

1.1 Get Book Two

In Book Two, you’ll build a useful web application, for hands-on learning. You should get started with Book Two
right away, for hands-on learning. Read Book Two when you are at your computer; read Book One for background
when you are away from the computer. The two books go together, which is why I want you to have both books.

1.2 Get the Videos

You can watch videos as you read the book. A subscription is only $19 per month (there’s also a discount when you get the video series plus advanced tutorials). You’ll get Book Two when you get the videos:

	Get Book Two plus the Videos

You can also get Book Two when you buy the advanced Capstone Rails Tutorials, which you’ll want after you finish this book series:

	Get Book Two plus the Videos and Advanced Tutorials

With the videos and the advanced tutorials, I promise there is no better way to learn Rails.

1.3 The Online and Ebook Versions

I’ve created an online version of this book at
learn-rails.com. You’ll also find
PDF, Epub (iBooks), and Mobi (Kindle) versions available for download. Look for the link “Free Online Edition” when you visit the site. It’s free:

	learn-rails.com

You’ll need the invitation code for the free online and ebook editions:

	LR1COM

I’ll ask you to provide your email address when you sign up
to get free access. I work hard to keep the books up to date, incorporating
improvements and fixing errors as readers report issues. I update the books often and I send
email to notify of updates. If you bought the book
from Amazon or another retailer, email is the only way to learn about updates.

Get the ebook version you prefer, get Book Two when you are ready, and let’s get started.

 Chapter 2 Introduction

Welcome. This is a first step on your path to learn Ruby on Rails.

This book contains the background that’s missing from other tutorials. Here you’ll learn key concepts so you’ll have a solid foundation for
continued study. Whether you choose to continue with another book in this series,
a video course, or a code school, everything will make
sense when you start here.

You can read this book anywhere, at your leisure, on your phone or tablet. Use this book to gain background understanding when you are not at your computer. With Book Two, the next in the series, you’ll need a computer at hand so you can build your first web application.

In Book Two, you’ll build a working web application so you’ll gain
hands-on experience. Along the way, you’ll practice techniques used by
professional Rails developers. And I’ll help you’ll understand why Rails
is a popular choice for web development.

You can start with Book Two before finishing this book if you’re eager to get started building your first application. In fact, I recommend it, because the hands-on learning in Book Two reinforces the concepts you learn in this book.

[image: images/figures/learn-rails]
Figure 2.1: The application you will build in Book Two.

2.1 Is It for You?

If you’ve built simple websites using HTML, you’ll quickly progress to
building websites with Rails. Or, if you have experience in a language
such as PHP or Java, you’ll make the jump to the Rails framework. But
I promise you don’t need to be a programmer to succeed with this book or the next. You’ll be surprised how quickly you become familiar with the Unix command line interface and the Ruby programming language even if you’ve never tried programming before.

My books are ideal if you are:

	a student

	a startup founder

	making a career change

If you are starting a business, and hiring developers,
or working alongside developers as a manager or developer, this book
will help you talk with developers. However, the true purpose of my book is to help you become you a Rails
developer yourself. I want to help you launch a startup or begin a new career.

2.2 What To Expect

There is deep satisfaction in building an application and making it run. With this book and the next, I’ll give you everything you need to build a real-world
Rails application. More importantly, I’ll explain everything you build,
so you understand how it works.

When you’ve completed this tutorial, you will be ready for more advanced
self-study, including the Capstone Rails Tutorials,
textbook introductions to Rails, or workshops and code camps that
provide intensive training in Ruby on Rails. Other curriculums often
skip the basics. With this tutorial you’ll have a solid grounding in key
concepts. You won’t feel overwhelmed or frustrated as you continue your
studies. I think you’ll also have fun!

This book and the next are good preparation for:

	textbooks such as Michael Hartl’s Ruby on Rails Tutorial

	introductory workshops from RailsBridge or Rails Girls

	intensive training with immersive code camps

	Capstone Rails Tutorials from the RailsApps Project

We are blessed with many textbooks, workshops, and classroom programs
that teach Ruby on Rails. I believe this book is unique in covering the
basics while introducing the tools and techniques of professional Rails
development.

2.2.1 What’s in Book One

Book One is a self-help book that can change your life,
though here you won’t find any inspirational quotes or magical thinking.

I explain the culture and practices of the Rails
community. I introduce the basic concepts you’ll need to understand
web application development. You’ll learn how to be a successful learner
and how to get help when you need it. I also provide a plan for study so you can learn more when you need it. There’s so much to learn,
it helps to have a map so you know where to go next.

Programming can be frustrating and Rails isn’t easy for beginners. The chapter, “Rails Challenges,”
describes many of the problems learners encounter. It’s natural to get discouraged so take a look when you begin to feel overwhelmed.

Two chapters, “Crossing the Chasm”, and “Level Up”, will help you after you put the book down. Many learners feel stranded if their only experience is step-by-step tutorials. These chapters are designed to give you a strategy for building an application on your own.

2.2.2 What’s in Book Two

You’ll start coding in Book Two. It’s a hands-on tutorial
that will lead you through the code needed to build a real-world web application. Don’t
skip around in Book Two. The tutorial is designed to unfold in
steps, one section leading to another, until you reach the “Testing”
chapter.

You can complete Book Two in one long weekend, though it will take
concentration and stamina. If you work through the book over a longer
timespan, try to set aside uninterrupted blocks of two hours or more for
reading and coding, as it takes time to focus and concentrate.

Feel free to start Book Two before you finish this book. Begin coding with Book Two
while you get background knowledge from this book at your leisure.

Visit tutorials.railsapps.org
to learn how to get Book Two.

2.2.3 A Warning About Links

My books are densely packed with links to background reading. If you
click every link, you’ll be a well-informed student, but you may never
finish the book! It’s up to you to master your curiosity. Follow the
links only when you want to dive deeper.

2.2.4 What Comes Next

The best way to learn is by doing; when it comes to code, that means
building applications. Hands-on learning with actual Rails
applications is the key to absorbing and retaining knowledge.

After you read this book, you’ll be able to work with the example applications from the RailsApps Project. The project provides open source
example applications for Rails developers, for free. Each application is
accompanied by a tutorial in the Capstone Rails Tutorials
series, so there’s no mystery code. Each application can be generated in a few minutes
with the Rails Composer tool, which professional
developers use to create starter applications.

The RailsApps Project is solely supported by sales of the books, videos, and advanced tutorials. If you make a purchase, you’ll keep the project going. And you’ll have my sincere appreciation for your support.

2.2.5 Versions

Book One is relevant and useful for any version of Rails. Book Two requires
a specific version of Rails (the newest at the time it was revised) and
shows how to install the latest version of Rails.

2.2.6 Staying In Touch

If you obtained this book from Amazon or another retailer, take a moment
to get on the mailing list for the book. I’ll let you know when I
release updates to the book.

	Get on the mailing list for the book

2.2.7 A Note to Reviewers and Teachers

This book approaches the subject differently than most introductions to
Rails. It introduces concepts of product planning, project management,
and website analytics to place development within a larger context of
product development and marketing. In Book Two, rather than
show the student how to use scaffolding, I introduce the
model-view-controller design pattern by creating the components
manually. Lastly, though every other Rails tutorial shows how to use a
database, Book Two doesn’t, because I want the book to be a short
introduction and I believe the basic principles of a web application
stand out more clearly without adding a database to the application. Though this tutorial is not a typical Rails introduction, I hope you’ll
agree that it does a good job in preparing Rails beginners for continued
study, whether it is a course or more advanced books.

2.2.8 Using the Book in the Classroom

If you’ve organized a workshop, course, or code camp, and would like to
assign the book as recommended reading, contact me at
daniel@danielkehoe.com to arrange
access to the book for your students. The book is available at no charge
to students enrolled in qualified workshops or classes.

2.2.9 Let’s Get Started

In the next chapter, we’ll start with basic concepts.

 Chapter 3 Concepts

This chapter provides the background, or big picture, you will need to
understand Rails.

These are the key concepts you’ll need to know before you try to use
Rails.

In the following two chapters, you’ll gain a deeper
understanding of Rails, including its history, the guiding principles
of Rails, and reasons for its popularity. First, let’s consider how the web works.

3.1 How the Web Works

We start with absolute basics, as promised.

When you “visit a website on the Internet” you use a web browser such
as Safari, Chrome, Firefox, or Internet Explorer.

Web browsers are applications (software programs) that work by reading
files.

Compare a word processing program with a web browser. Both word
processing programs and web browsers read files. Microsoft Word reads
files that are stored on your computer to display documents. A web
browser retrieves files from remote computers called servers to
display web pages. Simply put, the World Wide Web is nothing more than files
delivered to web browsers by web servers.

Web browsers make requests to web servers. Every web address, or URL, is a request to a web server. A web server responds by sending one or more files. We call this the request-response cycle.

Everything displayed by a web browser comes from four kinds of files:

	HTML - structure (layout) and content (text)

	CSS - stylesheets to set visual appearance

	JavaScript - programming to alter the page

	Multimedia - images, video, or other media files

At a minimum, a web page requires an HTML file. HTML files contain the words you see on a web page, along with markup tags
that indicate headlines, paragraphs, and other types of text such as lists. If a web browser
receives only an HTML file, it will display text, with default styles
for headlines and paragraphs supplied by the browser.

Because it is the World Wide Web, HTML files also contain hypertext links to other web pages. Sometimes links appear in the form of a button or an image. Sometimes a web page contains
a form with a button that sends information to the web server. Links are web addresses, or URLs,
and (you guessed it), they return files.

If the page is always the same, every time it is displayed by the web
browser, we say it is static. Webmasters don’t need software such as
Rails to deliver static documents; they just create files for delivery
by an ordinary web server program. When you learn HTML and create simple web
pages, you learn to upload files to a hosting service that provides web servers
that deliver your HTML files to web browsers. In principle, you can run a web server
delivering web pages from your computer at home but, in practice, most people want a web server
that runs 24 hours a day and is located in a data center that has fast and reliable
connections to the Internet.

Static websites are ideal for particle-physics papers (which was the
original use of the World Wide Web). But most sites on the web,
especially those that allow a user to sign in, post comments, or order
products and services, generate web pages dynamically. When you see a form
with a button, you probably are looking at a page that makes a request to a web application.

Dynamic websites often combine web pages with information from a
database. A database stores information such as a user’s name, comments,
advertisements, or any other repetitive, structured
data. A database query can provide a selection of data that customizes
a webpage for a particular user or changes the web page so it varies
with each visit.

Dynamic websites use a programming language such as
Ruby to
assemble HTML, CSS, and JavaScript files on the fly from component files
or a database. A software program written in Ruby and organized using
the Rails development framework is a Rails web application. A web
server program that runs Rails applications to generate dynamic web
pages is an application server (but usually we just call it a web
server).

Software such as Rails can access a database, combining the results of a
database query with static content to be delivered to a web browser as
HTML, CSS, and JavaScript files. Keep in mind that the web browser only
receives ordinary HTML, CSS, and JavaScript files; the files themselves
are assembled dynamically by the Rails application running on the
server.

Even if you are not going to use a database, there are good
reasons to generate a website using a programming language. For example,
if you are creating several web pages, it often makes sense to assemble
an HTML file from smaller components. For example, you might make a
small file that will be included on every page to make a footer (Rails
calls these “partials”). Just as importantly, if you are using Rails,
you can add features to your website with code that has been developed
and tested by other people so you don’t have to build everything
yourself.

The widespread practice of sharing code with other developers for free,
and collaborating with strangers to build applications or tools, is
known as open source software
development. Rails is at the heart of a vibrant open source development
community, which means you leverage the work of tens of thousands of
skilled developers when you build a Rails application. When Ruby code is
packaged up for others to share, the package is called a gem. The name
is apt because shared code is valuable, like a gem.

Ruby is a programming language. Rails is a development framework. Rails
is software code written in the Ruby language. It is a library or
collection of gems that we add to the core Ruby language. More importantly, Rails is a set of structures and conventions for building a web
application using the Ruby language. By using Rails, you get well-tested code that implements
many of the most-needed features of a dynamic website. When you need additional features,
you can add additional gems.

With Rails, you will be using shared standard practices that make it
easier to collaborate with others and maintain your application. As an
example, consider the code that is used to access a database. Using Ruby
without the Rails framework, or using another language such as PHP, you
could mix the complex programming code that accesses the database with
the code that generates HTML. With the insight of years of developers’
collective experience in maintaining and debugging such code, Rails
provides a library of code that segregates database access from the code
that displays pages, enforcing separation of
concerns, and
making more modular, maintainable programs.

In a nutshell, that’s how the web works, and why Rails is useful.

For more on the history of Rails, and an explanation of why it is popular, see the
next chapters. But before we dive into Rails, let’s look at the increasingly
complex world of web development, particularly the difference between front-end
and back-end applications, and the programming languages we use, Ruby and JavaScript.

3.2 Programming Languages

JavaScript and Ruby are both general-purpose programming languages.

Developers use other popular programming languages such as C, Python, and Java. And developers like to talk about newer languages such as Elixir and Go, often comparing the popularity of programming languages. Most developers use only one or two popular languages on the job such as Ruby and JavaScript but hardcore programmers love to try new languages.

Just a note: Java and JavaScript are unrelated, except by name. Java is a general-purpose language used in large enterprises, such as banking, where large teams of developers build applications. JavaScript is a language that was developed for use in web browsers. It was named “JavaScript” to take advantage of the popularity of Java but has little in common with Java except for the name.

And a further note: HTML, the Hypertext Markup Language, is not a programming language. It is a markup language that uses tags to add structure and links to text. It doesn’t allow conditional execution such as if... then... else which is key to programming. If you know HTML you can be a “coder,” writing HTML code, but you are not really a programmer.

3.3 Ruby and JavaScript

Ruby is the programming language you’ll use when creating web
applications that run on your local computer or a remote server using
the Rails web application development framework.

JavaScript is the programming language that controls every web browser. The companies that build web browsers (Google, Apple, Microsoft,
Mozilla, and others) agreed to use JavaScript as the standard browser
programming language. You might imagine an alternative universe in which
Ruby was the browser programming language. That’s not
the real world; plus it would be boring, as learning more than one
language makes us smarter and better programmers.

3.4 JavaScript and JQuery

Though most of the code in Rails applications is written in Ruby,
developers add JavaScript to Rails applications to implement features
such as browser-based visual effects and user interaction. For simple
Rails applications, you only need to learn Ruby. For more sophisticated
web applications, you’ll need to know both Ruby and JavaScript.

JavaScript was first used on websites to add little features to the browser. For example, JavaScript
can be used to display the current date and time on a web page. Or JavaScript can be used to pop up
an annoying window when you try to leave a web page. There was little consistent structure to early JavaScript
programs. And because JavaScript is an older language without a built-on package manager, there were no
package libraries like Ruby gems to add functionality. Instead, web developers shared scripts or snippets
of code to add commonly-implemented features.

3.4.1 JQuery

In 2006, a group of developers released jQuery, a robust collection of
scripts that are a foundation for most of the simple interactive user features found on websites today. Rails includes jQuery as part of any Rails application. You’ll find jQuery on 65% of websites.

To understand jQuery, you need to know that every web browser takes an intermediate step between receiving an HTML file and displaying a web page. After a web browser receives a file from a web server, it creates code in the computer’s memory that
describes the web page, complete with text and formatting, which we call the Document Object Model, or DOM.
JQuery scripts manipulate the DOM, which is the web browser’s internal representation of
web page. JQuery commands make changes to the DOM. For example, you can write Javascript that replaces words on the page with different words. Or you can hide and reveal sections of the page.

Many Rails applications use jQuery or pure JavaScript to add interactive browser features. Though it is easy to add JavaScript to web pages generated by Rails, the result is often “JavaScript gravy” or “soup:” a sloppy mix of JavaScript snippets and jQuery plugins poured over Rails views. After seeing applications built with JavaScript soup, developers often get an urge to adopt a framework like Rails for JavaScript, with standard structures and conventions to organize code.

We’ll look at JavaScript frameworks later in this chapter. But first, consider a universe where JavaScript is the only language you need to know. Not all developers use Rails; some use full-stack JavaScript.

3.4.2 Full-Stack JavaScript

In the last few years, developers have been improving the JavaScript language so
it can be used for server-side development as well as development of applications
that run in the browser. System administrators can install the
Node.js code library to enable
servers to run JavaScript. Server-side JavaScript web application
frameworks are available, such as Express and
Meteor, but none are as popular as Ruby on
Rails. Some code schools are now teaching “full stack JavaScript” using the
“MEAN Stack,” which combines four popular JavaScript technologies; MongoDB, Express, AngularJS, and Node.js.

There are at least a dozen popular languages that developers use to build web applications. This will continue to be true. Full-stack JavaScript is now an option but Rails is not going away. For now, the Rails ecosystem is better known with more resources for building web applications and learning development. There will always be
jobs for Rails developers. Startups will always be able to find developers who have experience with Rails. Your effort
in learning Rails will continue to be worthwhile. However, it is important to learn JavaScript as well.

3.5 Front and Back Ends

We often talk about “front-end” and “back-end” development. The architecture of the web, split between
web browsers running on local computers and web application programs running on remote servers, is inherently client-server. When we write applications for both the front end and back end, we are full-stack developers.

Full-stack developers handle it all, including connections to database servers, server-side web applications, JavaScript for web browsers, and system administration of Unix servers. Increasingly, as web development gets more complex, there are fewer full-stack developers and more specialists. If you are building a web application for your own business, you may need to be a full-stack developer. But if you look for a job, you may choose to specialize as a front-end or back-end developer. Front-end developers have some design skill, worry a lot about user experience, and develop expertise with JavaScript. Back-end developers don’t worry as much about design. They focus on the architecture of applications, database structure, and application performance using Ruby.

Rails was originally created for full-stack development. Its model-view-controller architecture manages both connections to databases and display of web pages, requiring nothing more than the Ruby language and the Rails software library. JavaScript was originally created for front-end development. Some developers now use JavaScript for full-stack development but it is still primarily used for adding interactive features to web pages.

Rails is popular for both the front end and the back end. The conventions of building Rails applications are widely known and a developer can leverage the work of tens of thousands of other developers by including open-source gems. A Rails back end can connect to thousands of different services and efficiently handle traffic for any average website. If your business is so successful that you must deal with problems of scale, you’ll find many Rails experts able to help. For these reasons, developers continue to use Rails to build web applications, even as full-stack JavaScript grows in popularity.

JavaScript is becoming more popular but developers will continue to build full-stack Rails applications where complex JavaScript user interfaces are not required. This could be quick “minimal viable product” (MVP) tests of business ideas or any project where it is too costly to invest in separate front-end and back-end development. If you are going to quickly build a web application, and launch a business, just build it with Rails and don’t worry about implementing features in JavaScript.

If you want a complex front end that uses JavaScript extensively, you may still want to use Rails for the back end.

3.6 Rails 5

Rails 5.0 is the newest version of Rails.

Rails 5 recognizes the increasing use of Rails for back-end development. Rails 5 offers an option to build back-end-only applications that don’t generate browser views. Instead, a stripped-down Rails 5 application returns data that can be consumed and displayed by another application. With this approach, you can have Rails on the back end and a JavaScript web browser application, or a mobile application, on the front end.

With Rails 5, you can build a back-end application that just delivers data to a front-end application. Before Rails 5, most Rails applications generated entire web pages containing the results from a database query. Now with Rails 5, Rails developers
have begun to build web applications that deliver just data, in the JSON (JavaScript Object Notation) format. With this approach, the Rails application provides an API, or application programming interface, that provides standardized responses to requests from an application in the hands of a user, which could be an IOS or Android application on a phone, or a JavaScript application running in a web browser.

Now that you’ve learned about the differences between front-end and back-end applications, let’s learn about popular JavaScript frameworks.

3.7 JavaScript Frameworks

I’ve described Rails as a web development framework that uses the Ruby language. You can also find web development frameworks that use the JavaScript language.

JavaScript frameworks were first developed so developers could build SPAs, single-page applications. Early examples of SPAs, such as Apple’s MobileMe or iWork in 2008, were attempts to use JavaScript to build desktop-like applications to run in the web browser. The goal was to create RIAs, rich Internet applications, with similarities to software applications installed on the Mac or Windows, using JavaScript. Of course, no one really wants desktop applications anymore. We browse web pages to get information. We install mobile apps to get access to services. Sometimes we want access to services in web browsers. But we don’t really want desktop applications in a web browser.

3.7.1 AngularJS and Ember.js

AngularJS and Ember.js are the most popular JavaScript frameworks used to build single-page applications. They provide the structure and conventions that developers want for maintainable code. For complex, richly interactive web applications, these frameworks get rid of the “JavaScript soup” that is common in Rails applications.

Unlike Rails, which is hugely popular, none of these JavaScript frameworks have achieved hegemony or dominance among developers. For a learner, these frameworks require more programming experience than Rails. All of these frameworks break the familiar request-response cycle of the web. Just one URL delivers the entire single-page application. There are no web pages, only views that change completely or partially in response to user actions. Drawbacks to single-page applications are a slow initial load of the application, difficulty using analytics tools such as Google Analytics which rely on new pages loading in the browser, and views that won’t show up in Google search results. For all these reasons, single-page applications are best used to deliver services, not information, and require advanced skills to develop.

3.7.2 React

There’s a newer framework that can be used to dry up JavaScript soup. It’s
React, a JavaScript framework developed by engineers at Facebook. It can be used for single-page applications or to organize JavaScript for interactive features in ordinary Rails applications. Unlike AngularJS or Ember.js, React only manages views, not connections to databases or routing of requests, so it is not a full-stack framework, just a framework for the view layer. React’s approach to building web pages is abstract and complex. But React is a good choice for complex interactive features, if you’re determined to avoid JavaScript soup in your Rails application.

Ultimately, your decision to use JavaScript, and how much, depends on the kind of web application you want to build. If you want to build a product catalog, with many simple pages populated by a database, a full-stack Rails application may be all you need, perhaps with a few jQuery plugins. If your application is like Facebook, with lots of interactive features and many different pages, React may be a good choice as part of a full-stack Rails application. If you want to deliver a service such as live stock-market charts, you may want to build a complex single-page application using AngularJS or Ember.js, plus IOS and Android apps, connected to a Rails API server.

If you’re going to use JavaScript, either full-stack, or combined with Rails, use a JavaScript framework to avoid JavaScript soup. React could be a good place to start.

You’ll have a better idea of the importance of Rails if you understand “What is Rails?” Let’s look at that next.

 Chapter 4 What is Rails?

Rails is a library, or collection of
code, plus structures and conventions for building a web application.

Technically, it is a package library (a RubyGem), that is installed
using the operating system command-line interface, and adds
functionality to the Ruby language.

Rails provides structures and conventions for web development, so less
code is required to build a web application. All Rails
applications use the same structures, providing consistency
among applications. Common and well-known conventions make it easy
for developers to collaborate on Rails applications and share
improvements and add-on code libraries with a wide community.

The structures and conventions of Rails are codified as the Rails API
(the application programming interface,
or directives that control the code). The Rails API is documented online
and described in books, articles, and blog posts. Learning Rails means
learning how to use the Rails conventions and its API.

4.1 Rails as a Community

Rails, in a larger sense, is more than a software library and an API. Rails is the central project of a vast community that produces software libraries that simplify the task of building complex websites. Members of the Rails community share many core values, often use the same tools, and support each other with an informal network that is built on volunteerism. Overlapping the informal community is an economic network that includes jobs, recruiters, consulting firms, conferences, businesses that build websites with Rails, and investors that fund startups. Rails is popular among web startups, significantly because the pool of open source software libraries (RubyGems, or “gems”) makes it possible to build complex sites quickly.

This, then, is Rails: a software library and an API, plus a community of enthusiastic developers. But to learn to use Rails, you’ll need to consider it from additional points of view.

4.2 Six Perspectives on Rails

To really understand Rails, and succeed in building Rails applications,
we need to consider Rails from six additional perspectives.

A parable from the
Indian subcontinent describes six blind men who encounter an elephant. The blind man who feels a leg says the elephant is like a pillar; the one who
feels the tail says the elephant is like a rope; the one who feels the
belly says the elephant is like a wall; and so on. Like six blind
men encountering an elephant, it can be difficult to understand Rails
unless you look at it from multiple points of view.

Here are six different ways of looking at Rails.

4.2.1 Web Browser Perspective

From the perspective of the web browser, Rails is simply a program
that generates HTML, CSS, and JavaScript files. These files are
generated dynamically. You can’t see the files on the server side but
you can view these files by using the web developer tools that are built
in to every browser. Later you’ll examine these files when you learn to
troubleshoot a Rails application.

4.2.2 Programmer Perspective

From the perspective of a programmer, Rails is a set of files
organized with a specific structure. The structure is the same for every
Rails application; this makes it easy to collaborate
with other Rails developers. We use text editors to edit these files to
make a web application.

4.2.3 Software Architect Perspective

From the perspective of a software architect, Rails is a structure
of abstractions that enable programmers to collaborate and organize
their code. Thinking in abstractions means we group things in categories
and analyze relationships. Conceptual categories and relationships can
be made “real” in code. Software programs are built of “concepts made
real” that are the moving parts of a software machine.

Notice that we are talking about abstractions, using language like
a philosopher. Most tutorials give you step-by-step instructions, like
following a recipe. You’ll get that in Book Two in this series. But to really
understand programming, you should grasp that we are working with
“abstractions made real.” The area of your brain that follows instructions
is distinct from the area that thinks abstractly. To be a programmer,
you’ll need both parts of the brain working together. Don’t worry; I’ll
explain the abstractions in terms anyone can understand.

To a software architect, classes are the basic parts of a software machine. A
class can represent something in the physical world as a collection of
various attributes or properties (for example, a User with a name,
password, and email address). Or a class can describe another
abstraction, such as a Number, with attributes such as quantity, and
behavior, such as “can be added and subtracted.” You’ll get a better
grasp of classes in Book Two when you learn “Just Enough Ruby.”

To a software architect, Rails is a pre-defined set of classes that are
organized into a higher level of abstraction known as an API, or
application programming interface. The Rails
API is organized to conform to certain
widely known software design
patterns. You’ll become
familiar with these abstractions as you build a Rails application. In Book Two,
you’ll learn about the
model–view–controller
design pattern. As a beginner, you will see the MVC design pattern
reflected in the file structure of a Rails application. That’s where you
will first see “abstractions made real.”

If you’ve subscribed to the video series or purchased the advanced tutorials,
this eight minute video introduces the model–view–controller concept:

	Model View Controller in Rails

4.2.4 Gem Hunter Perspective

We can look at Rails from the perspective of a gem hunter. Rails is
popular because developers have written and shared many software
libraries (RubyGems, or “gems”) that provide useful features for
building websites. We can think of a Rails application as a collection
of gems that provide basic functionality, plus custom code that adds
unique features for a particular website. Some gems are required by
every Rails application. For example, database adaptors enable Rails to
connect to databases. Other gems are used to make development easier,
for example, gems for testing that help programmers find bugs. Still
other gems add functionality to the website, such as gems for logging in
users or processing credit cards. Knowing what gems to use, and why, is
an important aspect of learning Rails.

You don’t need a subscription to view this free video introducing RubyGems:

	Free Video Lesson: What Are RubyGems

4.2.5 Time Traveler Perspective

We can also look at Rails from the perspective of a time traveler in
order to understand the importance of software version control. Specifically, we use the
Git revision control
system to record a series of snapshots of your project’s filesystem. Git
makes it easy to back up and recover files; more importantly, Git lets
you make exploratory changes, trying out code you may decide to discard,
without disturbing work you’ve done earlier. You can use Git with
GitHub, a popular “social coding” website, for
remote backup of your projects and community collaboration. Git can keep
multiple versions (“branches”) of your local code in sync with a remote
GitHub repository, making it possible to collaborate with others on open
source or proprietary projects. Strictly speaking, Git and GitHub are
not part of Rails (they are tools that can be used on any development
project). And there are several other version control systems that are
used in open source development. But a professional Rails developer uses
Git and GitHub constantly on any real-world Rails project.

4.2.6 Tester Perspective

Finally, we can consider a Rails application from the perspective of a
tester. Software testing is part of Rails culture; Rails is the first
web development platform to make testing an integrated part of
development. Before Rails, automated testing was rarely part of web
development. A web application would be tested by users and (maybe) a QA
team. If automated tests were used, the tests were often written after
the web application was largely complete. Rails introduced the
discipline of Test-Driven Development (TDD) to the wider web development
community. With TDD, tests are often written before any implementation
coding. It may seem odd to write tests first, but for a skilled TDD
practitioner, it brings coherence to the programming process. First, the
developer will give thought to what needs to be accomplished and think
through alternatives and edge cases. Second, the developer will have
complete test coverage for the project. With good test coverage, it is
easier to refactor, rearranging code to be more elegant or efficient. Running a test suite after refactoring provides assurance that nothing
inadvertently broke after the changes. TDD is seen as a necessary skill
of an experienced Rails developer. Book Two will introduce you to the
basic concepts of test-driven development and show you how to write
simple tests.

You’ve seen Rails from six different perspectives. You understand Rails
is a software library plus an API, as well as a community of developers. Now let’s dive deeper and consider how Rails fits in to a larger
technology stack and how it can vary within the stack.

4.3 Understanding Stacks

To understand Rails from the perspective of a professional Rails
developer, you’ll need to grasp the idea of a technology stack and
recognize that Rails can have more than one stack.

4.3.1 Full Stack

A technology stack is a set of technologies or software libraries that
are used to develop an application or deliver web pages. “Stack” is a
term that is used loosely and descriptively. It is a collection of
technologies that fit together, interacting with each other, and
providing different types of services. We say “stack” because we
use different software systems or software libraries as if they
were building blocks or bricks deployed in layers.

Often we consider a stack as layers added to the operating system. For a web application, we need a web server, a database, a
programming language, and perhaps additional software libraries.

Earlier we learned that full-stack developers have skills to work with
operating systems, web servers, databases, web applications, and
JavaScript programs in a web browser. That’s a formidable stack
of technologies.

There is no organization
that tells you what building blocks you must use. As a technologist,
your choice of stack reflects your experience, values, and personal
preference, just like religion or favorite beverage.

For example, Mark Zuckerberg developed Facebook in 2004 using the
LAMP application
stack:

	Linux (operating system)

	Apache (web server)

	MySQL (database)

	PHP (programming language)

Zuckerberg chose an operating system, a web server, a database, and a
programming language with which he was comfortable. In 2004, Rails
was not well known and Zuckerberg chose to implement his ideas using PHP
without any additional web application software library.

For this tutorial, your application stack will be:

	MacOS, Linux, or Windows

	Puma (web server)

	SQLite (database)

	Ruby on Rails (language and framework)

You’ll use an operating system that’s familiar to you, a basic web server that comes with Ruby,
a database that’s preinstalled with Mac or Linux operating system, the Ruby language, and the
Rails web application software library.

4.3.2 Rails Stacks

Sometimes when we talk about a stack, we only care about part of a
larger stack. For example, a Rails stack includes the gems we choose to
add features to a website or make development easier. When we select the
gems we’ll use for a Rails application, we’re choosing a stack or layers of
services we need just for a web application.

Sometimes the choice of components is driven by the requirements of an
application. At other times, the stack is a matter of personal
preference. Just as craftsmen and aficionados debate the merits of
favorite tools and techniques in any profession, Rails developers avidly
dispute what’s the best Rails stack for development.

The company 37signals, where the creator of
Rails works, uses this Rails stack:

	ERB for view templates

	MySQL for databases

	Minitest for testing

It is not important (at this point) to know what the acronyms mean
(we’ll learn later).

Another stack is more popular among Rails developers:

	Haml for view templates

	PostgreSQL for databases

	RSpec for testing

We’ll learn later what the terms mean. For now, just recognize that
parts of the Rails framework can be swapped out, just like making
substitutions when you order from a menu at a restaurant. The Rails stack
can vary, and it is part of a larger stack that includes an operating system,
web server, and database.

You can learn much about Rails by following the experts’ debates about
the merits of a favorite stack. The debates are a source of much
innovation and improvement for the Rails framework. In the end, the
power of the crowd prevails; usually the best components in the Rails
stack are the most popular.

The proliferation of choices for the Rails stack can make learning
difficult, particularly because the components used by many leading
Rails developers are not the components used in many beginner tutorials. In this tutorial, we stick to solid ground where there is no debate. In
the advanced Capstone Rails Tutorials,
we’ll explore stack choices and choose
components that are most often used by professional developers.

 Chapter 5 Why Rails?

Before you start building an application with Rails, it may help to know why developers like using Rails. This chapter looks at the history of Rails, its organizing principles, and the reasons for its popularity. First, though, we’ll consider Ruby, the language used for Rails.

5.1 Why Ruby?

Ruby is a programming language, created 20 years ago by Yukihiro “Matz” Matsumoto. By most measures of programming language popularity, Ruby ranks among the top ten, though usually as tenth (or so) in popularity, and largely due to the popularity of Rails. Like Java or the C language, Ruby is a general-purpose programming language, though it is best known for its use in web programming.

In a podcast from This Developer’s Life and in an interview from 2005, David Heinemeier Hansson, the creator of Rails, describes building an online project management application named BaseCamp in 2004. He had been using the PHP programming language because he could get things done quickly but was frustrated because of a lack of abstraction and frequently repetitive code that made PHP “dirty.” Hansson wanted to use the “clean” software enginering abstractions supported in the Java programming language but found development in Java was cumbersome. He tried Ruby and was excited about the ease of use (he calls it pleasure) he found in the Ruby language.

Ruby is known among programmers for a terse, uncluttered syntax that doesn’t require a lot of extra punctuation. Compared to Java, Ruby is streamlined, with less code required to create basic structures such as data fields. Ruby is a modern language that makes it easy to use high-level abstractions such as metaprogramming. In particular, metaprogramming makes it easy to develop a “domain specific language” that customizes Ruby for a particular set of uses (Rails and many gems use this “DSL” capability).

Ruby’s key advantage is RubyGems, the package manager that makes it easy to create and share software libraries (gems) that extend Ruby. RubyGems provides a simple system to install gems. Anyone can upload a gem to the central RubyGems website, making the gem immediately available for installation by anyone. The RubyGems website is where you’ll obtain the most recent version of Rails. And it is where you will obtain all the gems that help you build complex websites.

Ruby has several disadvantages (at least when programmers want to argue). Its processing performance is slow relative to C++ or Java. The execution speed of a language is seldom important, though, relative to the benefits gained by programmer productivity and the general level of performance required by most websites. For websites that require lots of simultaneous activity, Ruby is not well-suited to the sophisticated software engineering required to execute simultaneous activity efficiently (standard Ruby lacks “parallelism”, though some versions support it). Lastly, some programmers complain that Ruby programs (and especially Rails) contain “too much magic” (that is, complex operations that are hidden behind simple directives). These concerns haven’t stopped Rails from becoming a popular web development platform.

5.2 Why Rails?

Rails is popular and widely used because its conventions are pervasive and astute. Any web application has complex requirements that include basic functions such as generating HTML, processing form submissions, or accessing a database. Without a web application development framework, a programmer has a mammoth task to implement all the required infrastructure. Even with a web application development framework, a programmer can take an idiosyncratic approach, building something that no one else can easily take apart and understand. The singular virtue of Rails is that Heinemeier Hansson, and the core team that joined him, decided that there is one best way to implement much of the infrastructure required by a web application. Many of the implementation decisions appear arbitrary. In fact, though Heinemeier Hansson is often lambasted as autocratic in his approach to improving Rails, the Rails API reflects deep experience and intelligence in implementing the requirements of a web application development framework. The benefit is that every developer who learns the “Rails way” produces a web application that any other Rails developer can unravel and understand more quickly than if they encountered idiosyncratic code without as many conventions. That means collaboration is easier, development is quicker, and there’s a larger pool of open source libraries to enhance Rails.

The advantage of establishing conventions might seem obvious, but when Rails was released in 2004, web development was dominated by PHP, which lent itself to idiosyncratic code produced by solo webmasters, and Java frameworks such as Struts, which were often seen as burdened by an excess of structure. Other frameworks, such as Apple’s WebObjects, Adobe’s ColdFusion, and Microsoft’s .NET Framework, were in wide use but the frameworks were products controlled by the companies and built by small teams, which tended to restrict innovation. Today PHP, Java frameworks, and .NET remain popular, largely among solo webmasters (PHP), enterprise teams (Java), and Windows aficionados (.NET) but Rails has become very popular and has influenced development of other server-side frameworks.

The design decisions that went into the first version of Rails anchored a virtuous circle that led to Rails’s growth. Within the first year, Rails caught the attention of prominent software engineers, notably Martin Fowler and Dave Thomas (proponents of agile software development methodologies). Rails is well-matched to the practices of agile software development, particular in its emphasis on software testing and “convention over configuration.” The interest and advocacy of opinion leaders from the agile camp led to greater visibility in the wider open source community, culminating in a keynote lecture by Heinemeier Hansson at the 2005 O’Reilly Open Source Convention. Because Rails was adopted by software engineers who are influencers and trend setters, it is often said that Rails is favored by “the cool kids.” If that is so, it is largely because Rails is well-suited to software engineering practices that are promoted by thought leaders like Fowler and Thomas.

5.3 Rails Guiding Principles

The popularity of Rails is an outgrowth of the Rails “philosophy” or guiding principles. If you read blogs by Rails developers, you’ll often see references to these principles. Understanding these principles will help you make sense of Rails or, at least, some of the debates on developer blogs.

5.3.1 Rails is Opinionated

In the mid-1990s, web applications were often written in Perl, a programming language that promised, “There’s more than one way to do it.” Perl is a prime example of “non-opinionated” software; there’s no “right way” or “best way” to solve programming problems in Perl. Famously, Perl’s documentation states, “In general, [Perl’s built-in functions] do what you want, unless you want consistency.”

In contrast, Rails is said to be “opinionated.” There is a “Rails way” for many of the problems that must be solved by a web application developer. If you follow the Rails conventions, you’ll have fewer decisions to make and you’ll find more of what you need is already built. The benefit is faster development, improved collaboration, and easier maintenance.

5.3.2 Rails is Omakase

Omakase is a Japanese phrase that means “I’ll leave it to you.” Customers at sushi restaurants can order omakase, entrusting the chef to make a pleasing selection instead of making their own à la carte choices. In a famous essay Heinemeier Hansson declared Rails is Omakase, and said, “A team of chefs picked out the ingredients, designed the APIs, and arranged the order of consumption on your behalf according to their idea of what would make for a tasty full-stack framework…. When we, or in some cases I — as the head chef of the omakase experience that is Rails — decide to include a dish, it’s usually based on our distilled tastes and preferences. I’ve worked in this establishment for a decade. I’ve poured well in the excess of ten thousand hours into Rails. This doesn’t make my tastes right for you, but it certainly means that they’re well formed.”

Understanding that Rails is omakase means accepting that many of the opinions enshrined in the Rails API are the decisions of a Benevolent Dictator for Life, informed by discussion with other developers who have made significant contributions to the Rails code base. For the most part, Heinemeier Hansson’s “opinions” will serve you well.

5.3.3 Convention Over Configuration

“Convention over configuration” is an example of Rails as “opinionated software.” It is an extension of the concept of a default, a setting or value automatically assigned without user intervention. Some software systems, notably Java web application frameworks, need multiple configuration files, each with many settings. For example, a configuration file might specify that a database table named “sales” corresponds to a class named “Sales.” The configuration file permits flexibility (a developer can easily change the setting if the table is named “items_sold”). Instead of relying on extensive configuration files, Rails makes assumptions. By convention, if you create a model object in Rails named “User,” it will save data to a database table named “users” without any configuration required. Rails will also assume the table name is plural if the class name is singular.

“Convention over configuration” means you’ll be productive. You won’t spend time setting up configuration files. You’ll spend less time thinking about where things go and what names to assign. And, because other developers have learned the same conventions, it is easier to collaborate.

5.3.4 Don’t Repeat Yourself

Known by the acronym DRY, “Don’t Repeat Yourself” is a principle of software development formulated by Andy Hunt and Dave Thomas and widely advocated among Rails developers. In its simplest form, it is an admonition to avoid duplication. When code is duplicated, an application becomes more complex, making it more difficult to maintain and more vulnerable to unintended behavior (bugs). The DRY principle can be extended to development processes as well as code. For example, manual testing is repetititive; automated testing is DRY. Software design patterns that introduce abstraction or indirection can make code more DRY; for example, by eliminating repetitive if-then logic.

Code reuse is a fundamental technique in software development. It existed long before Andy Hunt and Dave Thomas promoted the DRY principle. Rails takes advantage of Ruby’s metaprogramming features to not just reuse code but eliminate code where possible. With a knowledge of Rails conventions, it’s possible to create entire simple web applications with only a few lines of code.

5.4 Where Rails Gets Complicated

It helps to understand the guiding principles of Rails. But it’s even more helpful to know how (and why) Rails is complicated by departures from the guiding principles.

5.4.1 When Rails has No Opinion

As you gain experience with Rails, you may encounter areas where Rails doesn’t state an opinion. For example, for years there was no “official” approach to queueing background jobs. (Tasks that take time, such as contacting a remote server, are best handled as “background jobs” that won’t delay display of a web page.) Fortunately, by 2015, the Rails core maintainers released the ActiveJob feature which implemented queueing. Much of the lively debate that drives development of new versions of Rails is focused on thrashing out the “opinions” that eventually will be enshrined in the Rails API.

5.4.2 Omakase But Substitutions Are Allowed

Implicit in the notion of “Rails is omakase” is an understanding that “substitutions are allowed.” Most of Heinemeier Hansson’s preferences are accepted by all Rails developers. However, many experienced developers substitute items on the menu at the Rails café. This has led to the notion that Rails has Two Default Stacks, as described in an essay by Steve Klabnik. Professional developers often substitute an alternative testing framework or use a different syntax for creating page views than the “official” version chosen by Heinemeier Hansson. This complicates learning because introductory texts often focus on the omakase selections but you’ll encounter alternatives in blog posts and example code.

5.4.3 Conventions or Magic?

One of the joys of programming is knowing that everything that happens in an application is explained by the code. If you know where to look, you’ll see the source of any behavior. For a skilled programmer, “convention over configuration” adds obscurity. Without a configuration file, there is no obvious code that reveals that data from a class named “Person” is saved to a datatable named “people.” As a beginner, you’ll simply accept the magic and not confound yourself trying to find how it works. It’s not always easy to learn the conventions. For example, you may have a User object and a “users” datatable. Rails will also expect you to create a “controller object.” Should it be named “UserController” (singular) or “UsersController” (plural)? You’ll only know if you let Rails generate the code or you pay close attention to tutorials and example code.

5.4.4 DRY to Obscurity

The risk that “convention over configuration” leads to obscurity is compounded by the “Don’t Repeat Yourself” principle. To avoid repetitive code, Rails often will offer default behavior that looks like magic because the underlying implementation is hidden in the depths of the Rails code library. You can implement a simple web application with only a few lines of custom code but you may wonder where all the behavior comes from. This can be frustrating when, as a beginner, you attempt to customize your application to do more than what’s shown in simple tutorials.

In the next chapter, we’ll consider some of the challenges that make it difficult to learn and use Rails.

 Chapter 6 Rails Challenges

Rails is popular. Rails is powerful. But Rails isn’t easy to learn.

You may have heard of a psychological phenomenon called “resistance.” When we struggle with something new, or must adapt to the unfamiliar, we
resist. We get discouraged. We complain. Sometimes we feel we should
quit.

This chapter is here to help with your resistance.

Its purpose is to acknowledge that, yes, Rails can be difficult.

Tens of thousands of people are successfully using Rails. I’ll hazard a
guess that none are significantly smarter, more motivated, or a better
student than you. Perhaps some of them had more time to study or better
access to mentors, but these factors simply accelerate the speed of
learning Rails. If you get discouraged, or think Rails is too hard,
recognize that you are encountering your own resistance, not any genuine
limitation. Take a break, set aside your learning materials, and come
back when your natural curiosity and eagerness has returned.

Sometimes resistance attaches to imaginary problems (like “I’m not smart
enough”). Just as often, resistance attaches to real problems, but
magnifies them into insurmountable obstacles (“Rails is impossible to
use on Windows!”). The best way to overcome these obstacles is to
acknowledge the resistance, investigate the obstacle, and seek support
from peers.

This chapter describes some of things that make Rails difficult.

These Rails challenges are obstacles, but other people overcame them. You can, too.

6.1 A List of Challenges

This list is incomplete. If you’ve encountered a Rails challenge that
isn’t listed here, email me at
daniel@danielkehoe.com and I will add
your suggestion to the next revision of the book.

6.1.1 It is difficult to install Ruby.

The installation process for Ruby on Rails is more difficult than
downloading and installing any consumer software applications. You are
setting up a development environment and you need system software as
well as Ruby. Depending on what you’ve done before, you may have altered
your system, introducing potentials for conflicts. Book Two provides
links to good installation guides in the “Get Started” chapter. But
installation instructions can’t accommodate the specific configuration
of your computer. Sometimes you just have to look for someone to help. You can also use a hosted development environment, such as Cloud9.

6.1.2 Rails is a nightmare on Windows.

Windows is very popular, so why is it difficult to develop with Rails on
Windows? It seems the Rails community has a bias against Windows. It
does, and there’s a reason. Rails is an open source project. Most open
source developers use Unix-based system tools. It is difficult and
time-consuming to convert Unix-based system tools to the Microsoft
Windows operating system. Open source developers prefer to spend their
time maintaining and improving their Unix-based projects. And expert
Windows developers are seldom interested in porting Unix-based system
tools to Windows. So system utilities such as RVM are not available for
Windows. And developers who create gems are seldom interested in
spending time to solve the problems that arise when code has to be
adapted for the idiosyncrasies of the Windows platform. This situation
is not going to change, so you have to make a choice. Stay with Windows
or get comfortable with Unix-based systems.

6.1.3 Why do I have to learn Git? It is difficult.

Real software development requires version control and Git is the
standard tool for Rails developers. If all you do is build applications
as a classroom exercise, you don’t need to learn Git. You can skip all
the parts of the book that mention Git. But sooner or later, if you
start doing real projects, you’ll need Git. Simple Git commands are not
difficult to learn. When you’ve developed your skills and confidence you
can learn the more advanced Git functions, such as branching.

6.1.4 Why worry about versions?

For simple projects you don’t need version management. My books introduce version management and
prepare you to handle version conflicts. As you tackle more complex
projects, and as new versions of Rails are released, you’ll face version
issues and version management will be helpful.

6.1.5 Do I really need to learn about testing?

For student projects, no, you don’t need to learn about testing. But as
soon as money or reputation is at stake on a project, you’ll need to
begin using test-driven development. Book Two introduces TDD but you’ll
need intermediate-level tutorials to develop proficiency. Once you’ve
grasped the basics, testing will become easy, and it actually is fun and
satisfying.

6.1.6 Rails error reporting is cryptic.

Actually, Rails error reporting is quite good. Stack traces are detailed
and error messages are descriptive. Beginners have a problem because the
stack traces and error messages provide a technical analysis of a
problem in terms that an experienced developer can understand. If error
reporting was “simplified” it might not be as intimidating but it would
not as accurate. It’s up to you to gain enough knowledge to understand
the error messages. Finally, the error reporting mechanism can point you
to the line in your code that triggers a problem, but it can’t know what
you trying to do, or describe the error in anything but technical terms.

6.1.7 There is too much magic.

The Rails “convention over configuration” principle leads to obscurity. Default behavior often looks like magic because the underlying
implementation is hidden in the depths of the Rails code library. If you
like to know how things work, this can be frustrating. You really have
only two choices when you encounter Rails magic. You can take time to
dig into the source code. If you do so, you’ll encounter frustration as
you encounter complex and sophisticated code, but you may also improve
your understanding and skill as a Ruby programmer. Or you can take on
faith that “it just works.” Often, you just need to use the convention
several times in different projects to get comfortable with the magic
and stop worrying that you don’t fully understand it.

6.1.8 It is difficult to grasp MVC and REST.

Even if you learn that the acronyms mean model-view-controller and representational state transfer,
MVC and REST are abstract concepts. If you simply follow a tutorial, the author will
show you how to build an application that uses MVC or REST, but you won’t see any alternative,
or understand why MVC or REST are best practices. When it is time to build your own
application, if you don’t understand the importance of separation of concerns you won’t be
sure how to structure your application. Understanding software architecture requires
abstract reasoning, imagination, and experience, which takes time. It is difficult to
grasp but approach it with curiosity, seek explanations, and you’ll grasp it soon enough.

6.1.9 Rails contains lots of things I don’t understand.

If you look at the Rails directory structure, you’ll see many files and
folders. If you look at the Rails API, or pick up a Ruby tutorial,
you’ll also see code that is unfamiliar. Book Two describes some of
what you see. As you build more applications, you will gain proficiency
and master more of Rails and Ruby. Yet even as you gain mastery of
Rails, there will be aspects that remain unfamiliar. Don’t let the sheer
complexity stop you. The truth is, you don’t have to know “all” of Rails
or Ruby to build web applications.

6.1.10 There is too much to learn.

Very true. To be a full-stack web developer you need to know HTML,
JavaScript, CSS, Ruby, testing, databases, and much, much more. You
might think that developers who started ten years ago have an advantage
because there wasn’t as much to learn when they started. But today there
are many more high-quality tutorials and educational programs to
accelerate your learning. And resources like Google and Stack Overflow
have many more answers to questions. As the knowledge domain has grown,
so have the learning resources. You don’t have to learn everything. Get
a foundation in the basics and then dive deep as a specialist in an area
that appeals to you.

6.1.11 It is difficult to find up-to-date advice.

Rails has been around since 2004 with major new versions released every
two years. Chances are, answers to questions you find on Stack Overflow
or Google were written for an older version of Rails. There is no easy
way to determine if the answer is out of date. A particular aspect of
Rails may have changed—or not. Even worse, the answer may work,
but there may be a better way that reflects current best practices. To
filter the outdated in Google, use the “Search Tools” options for
specifying a timeframe. Look closely at the date of a blog posting or
Stack Overflow answer. Try to find a newer answer. Usually, if there are
a series of answers and things have changed, you’ll see the current best
answer. If you’re uncertain, don’t be shy about posting your question to
Stack Overflow. More importantly, make it your business to keep up with
the community, reading Peter Cooper’s Ruby
Weekly email newsletter or his daily
RubyFlow site.

6.1.12 It is difficult to know what gems to use.

There are so many gems available for Rails. Some add useful features,
like tagging or a mailing list API. Some are basic, such as gems for a
database or front-end framework. Even among basic gems, Rails offers
choices. Which are best? The Ruby Toolbox
can help, but mostly you will find guidance from looking at example
projects and noticing what other developers are using. There’s wisdom in
the crowd.

If you’ve subscribed to the video series or purchased the advanced tutorials,
this three minute video explains:

	How to Find Rubygems

6.1.13 Rails changes too often.

If you look at the Ruby on Rails Release History you’ll
see there is a new major release approximately every 1.5 years. Each
major release is well tested and relatively free of bugs. But new
features or new approaches often require rewrites of older applications. Commercial software products often make a priority of keeping the API
consistent over time. That’s not Rails. Rails is an open source project
and the core team embraces innovation. The maintainers expect that
you’ll keep up with changes.

6.1.14 It is difficult to transition from tutorials to building real applications.

Copying and pasting from tutorials is a good way to begin learning
Rails. But you’ll only become a skilled Rails developer when you build
something that is not shown in a tutorial. The first few hours (or days)
when you start building a custom application can be very difficult. Focus on the basics that are described in this book. Start with user
stories. Build pieces that you know how to do. Look for code samples on
blogs or GitHub or Stack Overflow. Try “spikes,” little experiments that
test ideas for implementation. Seek advice from peers or mentors. At
first it will be slow going. But you will pick up momentum. The chapter,
“Crossing the Chasm,” will provide specific strategies to help.

6.1.15 I’m not sure where the code goes.

If you follow tutorials, you’ll learn “where the code goes” with the
model–view–controller design pattern. With a sense of the
request-response cycle, RESTful actions in the controller, and a few
guidelines such as “skinny controller, fat model” you’ll be able to
build intermediate-level Rails applications. Front-end code,
particularly JavaScript, can be difficult because not a lot has been
published about Rails best practices. In particular, the Rails asset
pipeline can be confusing for anyone who has done front-end development
without Rails. If you don’t know what you’re supposed to do, do whatever
works, then look for someone who can help you by providing a code
review.

6.1.16 People like me don’t go into programming.

Until recently in most countries, most Rails developers have been young men with an
engineering background. For people who don’t fit the stereotypical
profile, it can be hard to find role models or peers who demonstrate
that Rails is something everyone can learn. The challenge can be subtle,
as when you have the feeling that maybe if you were different you’d find
it easier to make progress. Or the challenge can be overt, when behavior
of fellow students or co-workers is disturbing or hurtful (often they
don’t even know!). Lack of diversity, and the cluelessness that
accompanies it, is unfortunate in the Rails community. But many people
are working to make the community more welcoming and inclusive. Organizations such as Rails Girls and
Railsbridge are creating more diversity in
the community. You may find support from peers there to affirm that you,
too, are entitled to knowledge and success.

These are some of the challenges you will face in learning and using Rails. Next,
we will look at how to get help.

 Chapter 7 Get Help When You Need It

Sometimes I’m asked, “Where’s the Rails manual?” There isn’t one. No single
document tells you how to use Rails. Instead, there’s a wealth of
documentation that describes various aspects of Rails.

Let’s consider where to look for help when you are working on your
own Rails projects.

7.1 Getting Help With Rails

If you’ve subscribed to the video series or purchased the advanced tutorials,
this six minute video gives some guidance:

	Get Help with Rails

What will you do when you get stuck?

“Google it,” of course. But here’s a trick to keep in mind. Google has
options under “Search tools” to show only recent results from the past
year. Use it to filter out stale advice that pertains only to older
versions of Rails.

Stack Overflow is as
important as Google for finding answers to programming problems. Stack
Overflow answers are often included in Google search results, but you
can go directly to Stack Overflow to search for answers to your
questions. Like Google, answers from Stack Overflow are helpful if you
check carefully to make sure the answers are recent. Also be sure to
compare answers to similar questions; the most popular answer is not
always the correct answer to your particular problem.

Requests for advice (especially anything that provokes opinions) are
often rejected on Stack Overflow. Instead, try Reddit for advice or
recommendations. You’ll find discussion forums (“subreddits”) devoted to
Rails and
Ruby. You can also visit the
Quora question-and-answer site for topics
devoted to Rails and
Ruby.

7.2 References

Here are suggestions for the most important references.

If you feel overwhelmed by all the links, remember that you can use
Book Two to build the tutorial application without any additional resources. Right now, it’s important to know additional help is available when you
need it.

7.2.1 RailsGuides

The Rails Guides are Rails’s official
documentation, written for intermediate-level developers who already
have experience writing web applications. The Rails Guides are an
excellent reference if you want to check the correct syntax for Rails
code. You’ll be able to use the Rails Guides after completing this
tutorial.

7.2.2 Cheatsheets

Tobias Pfeiffer has created a useful Rails Beginner Cheat
Sheet
that provides a good overview of Rails syntax and commands.

Even better than a cheatsheet, for Mac users, is an application named
Dash that offers fingertip access to reference
documentation for Ruby, Rails, HTML, CSS, JavaScript, and many other
languages and frameworks.

7.2.3 API Documentation

The API documentation for Ruby and Rails shows every class and method. These are extremely technical documents (the only thing more technical
is reading the source code itself). The documents offer very little help
for beginners, as each class and method is considered in isolation, but
there are times when checking the API documentation is the only way to
know for certain how something works.

	Rails Documentation - official API docs

	apidock.com/rails - Rails API docs with usage notes

	apidock.com/ruby - Ruby API docs with usage notes

I recommend Dash as a tool to look up classes,
modules, and methods in Ruby and Rails. Dash is a macOS app; use
Zeal on Linux. Dash and Zeal run offline (they
don’t need an Internet connection) so you can use them anywhere.

7.3 Meetups, Hack Nights, and Workshops

I’d like to urge you to find ways you can work with others who are
learning Rails. Peer support is really important when you face a
challenge and want to overcome obstacles.

Most large urban areas have meetups or user group meetings for Rails
developers. Try Meetup.com or google “ruby
rails (my city)”. The community of Rails developers is friendly and
eager to help beginners. If you are near a Rails meetup, it is really
worthwhile to connect to other developers for help and support. You may
find a group that meets weekly for beginners who study together.

Local user groups often sponsor hack nights or
hackathons which can be
evening or weekend collaborative coding sessions. You don’t have to be
an expert. Beginners are welcome. You can bring your own project which
can be as simple as completing a tutorial. You will likely find a study
partner at your level or a mentor to help you learn.

If you are a woman learning Rails, look for one of the free workshops
from RailsBridge or Rails
Girls. These are not exclusively for women;
everyone considered a “minority” in the tech professions is encouraged
to participate; and men are included when invited by a woman colleague
or friend.

7.4 Pair Programming

Learning to code is challenging, especially if you do it alone. Make it
social and you’ll learn faster and have more fun.

There’s a popular trend in the workplace for programmers to work
side-by-side on the same code, sharing a keyboard and screen. It’s
effective, both to increase productivity and to share knowledge, and
many coders love it. When programmers are not in the same office, they
share a screen remotely and communicate with video chat.

Look for opportunities to pair program. It’s the best way to learn to
code, even if your pairing partner is only another beginner. Learn more
about pair programming on the site
pairprogramwith.me and find a pairing
partner at codermatch.me or
letspair.net.

Remote pair programming requires tools for screen sharing and video
chat. Pairing sessions often use:

	Google+ Hangouts

	Screenhero

	Floobits

	Cloud9 IDE

More tools are emerging as remote pair programming becomes popular.

7.5 Pairing With a Mentor

By far, the best way to learn is to have a mentor at your side as you
undertake a project. That is an opportunity that is seldom available,
unless you’ve been hired to be part of a team in a company that
encourages pair programming.

You can try RailsMentors, a network of
volunteer mentors offering free help.

If you can pay for help, find a mentor using
HackHands or
AirPair. Market rates are expensive for a
student, obviously, but if you are learning on the job or building an
application for your own business, connecting online with a mentor might
be a godsend.

AirPair connects developers for real-time
help using video chat and screen sharing. Experts set their own rate and
the site matches you according to your budget. Expect to pay market
rates for consulting ranging from USD $40 per hour to $150 per hour or
more.

HackHands promises to instantly connect you
with a qualified expert at a cost of one dollar per minute for
mentorship using video chat and screen sharing.

7.6 Code Review

Code review is an essential part of the development process. There’s
always more than one way to implement a feature, and some ways are
better than others, but you may not know it unless you ask someone to
look at your code. When you pair with a mentor, you get the benefit of
code review. But even if you don’t have a mentor, you can get code
review online. StackExchange, the parent of StackOverflow, has a free
site for code review:

	codereview.stackexchange.com

Expert code review will accelerate your learning faster than anything
else.

Knowing where to go for help is important; it is just as important to stay current.

7.7 Staying Up-to-Date

Rails changes frequently and its community is very active. Changes to
Rails, expert blog articles, and new gems can impact your projects, even
if you don’t work full-time as a Rails developer. Consequently, I urge
you to stay up-to-date with news from the community.

I suggest signing up for two weekly email newsletters:

	Ruby Weekly

	Green Ruby News

Another weekly email newsletter is more technical, and focused on code
arriving in the next version of Rails:

	This Week in Rails

For daily news about Rails, check Peter Cooper’s
RubyFlow site which lists new blog posts
from Rails developers each day.

Also take a look at this list of top blogs for Rails developers:

	45 Ruby Blogs

If you like podcasts, check out Ruby Rogues
and Envy Labs’s Ruby5.

Finally, you can follow @rails_apps on
Twitter for news about the RailsApps project.

 Chapter 8 Plan Your Product

Tutorials from other authors focus only on coding. But Rails developers
do more than code. Software development is a process that begins with
planning and ends with analysis and review. Coding, testing, and
deployment is at the core but you’ll need to learn about the entire
process to succeed professionally. That’s why we look at product
planning and project management.

For this beginning tutorial, we’ll introduce concepts about product
planning and project management that you will encounter as a Rails
developer.

8.1 Product Owner

On your project, who is the product owner?

The product owner is the advocate for the customer, making sure that the
team creates value for the users.

If you are a solo operator, you are the one who will decide what
features and functionality will be included in your application. But if
you’re part of a team, either in a startup, as a consultant, or in a
corporate setting, it may not be clear who has responsibility for
looking at the application from the point of view of the application
user. Someone must decide which features and functionality are essential
and which must be left out. We call this managing scope and combating
feature creep.

It’s important to assign a product owner. Without a product owner in
charge, tasks remain vague and developers have difficulty making
progress.

In large organizations, a product owner may be a product
manager or a project
manager. A product owner
usually is not a management executive (though there will likely be an
executive sponsor). Everyone on the team — including management, developers, and
stakeholders — should agree to designate a product owner and give that
person authority to define features and requirements.

8.2 User Stories

A product owner’s principal tool for product planning is the user
story.

In the past, when software engineering primarily served government or
large corporations, product planning started with requirements
gathering defined
as use cases, and culminated
in a requirements
specification. User stories are a faster, more flexible approach to product planning
that originated with an approach called Agile software
development.

User stories are a way to
discuss and describe the requirements for a software application. The
process of writing user stories helps a product owner identify all the
features that are needed for an application. Breaking down the
application’s functionality into discrete user stories helps organize
the work and track progress toward completion.

User stories are often expressed in the following format:

As a
I want
In order to

Here is an example:

Join Mailing List
As a visitor to the website
I want to join a mailing list
In order to receive news and announcements

A typical application has dozens of user stories, from basic sign-in
requirements to the particular functionality that makes the application
unique.

You don’t need special software to write user stories. Just use index
cards or a Word document. In the next chapter, we’ll see how you can
enter user stories as tasks in a to-do list. Here’s the format:

[image: images/figures/learn-rails-lowdown-partial]
Figure 8.1: A user story.

Just like Rails provides a structure for building a web application,
user stories provide a structure for organizing your product plan.

8.3 Wireframes and Mockups

Often, before writing user stories, a product owner will make rough
sketches of various web pages. Sketching is a phase where you try out
ideas to clarify your vision for the application. Sketching can lead to
a wireframe or a mockup. These terms are often used interchangeably but
there are differences in meaning.

A wireframe is a
drawing showing all functional elements of a web page. It should not
depict a proposed graphic design for a website, rather it should be a
diagram of a web page, without color or graphics.

A mockup adds graphic design to a wireframe; including branding
devices, color, and placeholder content. A mockup gives an impression of
the website’s “personality” as well as proposed functionality.

One of the most popular tools for creating wireframes is Balsamiq
Mockups (despite the name, it
produces wireframes, not mockups). There are dozens of others listed in
the article Rails and Product
Planning.

As a product owner, writing user stories or sketching wireframes will
help you refine product requirements. Some people like a visual approach
with wireframes; others prefer words and narrative. Either approach will
work; both are good.

8.4 Graphic Design

Very few people have skills as both a visual designer and a programmer. The tools are different; graphic designers typically use Adobe
Photoshop, though web-savvy designers often create designs directly in
HTML and CSS, while developers write code.

If you’re lucky, you will work with a skilled graphic designer as you
build your web application. If you are very lucky, you may work with
someone who is a user experience (UX) designer or interaction
designer (IxD). Interaction design is a demanding, sophisticated
discipline that requires the mindset of an anthropologist and the eye of
a visual artist to find not just the most pleasing, but the most
effective visual design for an application user interface. You can find
interaction designers discussing their concerns on the
IxDA website, including the
differences between interaction design
and UX design.

If you’re working with a graphic designer you might collaborate on a
moodboard or a design brief to define the look and feel of your
application. If the designer works in Photoshop, you’ll face the
challenge of converting design layouts from Photoshop to HTML and CSS.
There are service firms that do this for a fee but obviously it’s easier
to work with a designer who can implement a layout directly in HTML and
CSS.

Rails can be particularly challenging when it comes to integrating
graphic design with code. Rails uses a hybrid of HTML markup mixed with
Ruby programming code in its view files (depending on the stack you’ve
selected, the view files can use ERB, Haml, or other syntaxes for mixing
HTML and Ruby). Few designers are comfortable with Ruby code mixed with
HTML so you may end up doing integration yourself.

If you don’t have a skilled graphic designer available to help, you can
use Bootstrap or other front-end frameworks
such as Zurb Foundation to quickly add an
attractive design to your application.

In a later chapter that covers HTML and CSS, you’ll learn about templates and
themes for Bootstrap that provide a beginning point for page design.

8.5 Software Development Process

Product planning is the initial phase of a larger software development
process. You can approach this casually, and start coding with curiosity
and ambition, finding your own best way to the end product, by trial and
error. Most hobbyist and student developers need no other approach.

When money or reputation is at stake, casual approaches to software
development are risky. Compared to other forms of engineering, software
development is peculiarly prone to failure. As recently as 2003, IBM
stated,
“Most software projects fail. In fact, the Standish group reports that
over 80% of projects are unsuccessful either because they are over budget, late, missing function, or a combination. Moreover, 30% of software projects are so poorly executed that they are canceled
before completion.”

Professional software developers, being intelligent and reflexive, and
driven by a desire to become more efficient, or wanting to avoid the
wrath of bosses and clients, frequently look for ways to reduce risk and
improve the software development process. In recent years they’ve
succeeded in improving the success rate of software engineering, largely
due to the adoption of software development methodologies that improve
the business process
of producing software.

If you’re a hobbyist or casual programmer, you don’t need to learn about
software development methodologies.

If you are going to be held accountable for the success or failure of a
project, you should learn more about software development methodologies.

If you’re going to be interviewing for a job as a programmer, it pays to
recognize some of the names of software development methodologies and
ask whether your employer has adopted a particular approach, especially
if you’d like to work for a company that prides itself on being
well-organized and supportive of staff development. Hiring managers may
say, “we’ve synthesized several methodologies,” which may mean they
don’t have a good answer for the question, or it may mean they are
prepared to thoughtfully discuss the merits of various approaches to
software development. Managers who can discuss software development
methodologies are more likely to be concerned about the welfare of their
team.

Here are some software development methodologies you may hear about,
with some notable characteristics:

	waterfall process - an old and disparaged approach

	Agile software development - an iterative and incremental approach

	Scrum - known for “sprints” and daily standup meetings

	Extreme Programming (XP) - pair programming and test-driven development

Agile, Scrum, and XP are all related, and often mixed in practice.

As you mature as a software developer, take time to think about the
process of building software and learn more about software development
methodologies.

8.6 Behavior-Driven Development

There is one prominent software development approach that is important
for product planning. It is called Behavior-Driven Development (BDD), or
sometimes, Behavior-Driven Design.

BDD takes user stories and turns them into detailed scenarios that are
accompanied by tests.

Here’s a screenshot from a consultant’s web application that shows how a
user story can be extended from a “feature” to include detailed
“scenarios.”

[image: images/figures/learn-rails-lowdown-full]
Figure 8.2: Feature and scenario.

Rails developers turn these scenarios into tests using either a software tool
named Cucumber or RSpec to run automated test suites. Most
developers write scenarios using a simple text editor.

With automated tests, a product owner can determine if developers have
succeeded in implementing the required features. This process is called
acceptance testing. Automated tests also make it easy for developers
to determine if the application still works as they add features, fix
bugs, or reorganize code. This process is called regression testing.

On a small project like our tutorial application, you won’t use BDD.
It’s easy enough to manually test the features before you deploy your application.

For an introductory book, BDD is an advanced topic. But on a project
where money and reputation is at stake, BDD can be very important. Every
time an application is deployed, there’s a chance that something could
be broken. Software development is plagued with “fix one thing,
accidentally break another” as code is refactored or improved. Manual
testing can’t be expected to reveal every bug. That’s why automated
testing, providing coverage of every significant user-facing feature, is
the only way to know if you’ve deployed without known bugs.

In Book Two, a “Testing” chapter will introduce you to
the terminology and concepts of automated testing. You won’t have to
worry about testing when we build the tutorial application, but
afterward you’ll learn enough about testing to be prepared for more
advanced tutorials.

 Chapter 9 Manage Your Project

How do you know you’re making progress? Are you taking care of
everything that needs to be done? These questions are at the center of
project management. Whether you are working alone or as part of a team,
you need to define your tasks and track progress toward your goal.

The previous chapter on product planning showed how user stories can
be used to break down an application into discrete features. User
stories can be the basis for a list of tasks.

9.1 To-Do List

You can track your tasks with a simple to-do list. Some entrepreneurs
like the discipline of the GTD system (Getting Things
Done) for personal
productivity and time management. Our article on Rails and Project
Management
offers a list of popular to-do list applications, either for personal
task management or team-oriented task management.

9.2 Kanban

Kanban is a
method of managing projects that has been adapted from lean
manufacturing for use
in software development. In Japanese, “Kan” means visual, and “ban”
means card or board.

Imagine putting a big whiteboard on your wall and creating columns for a
series of to-do lists. The columns, called
swimlanes, are labelled:
Backlog, Ready, Coding, Testing, Done. Each swimlane contains index
cards that describe a user story or other task. To plan your work and
track progress, you’ll move the index cards across the board from column
to column. To stay focused and avoid becoming overwhelmed, you’ll only
pick the most important user stories or tasks from the backlog column
and you’ll limit the number of items in each column to what can be
realistically accomplished in the time available. That’s the essence of
kanban as it is used for software development.

See the article on Rails and Project
Management
for a list of kanban web applications. Trello is
particularly popular for task management.

9.3 Agile Methodologies

For a solo project or a small team, you’ll do fine with a simple to-do
list or (even better) a kanban web application for managing your
software development process.

If you’ve got enough people to need to hire a project manager, you
should look at project management software that supports teams using
Agile software
development
methodologies. Pivotal Tracker is the
best known tool but there are many other agile
tools.

Learn more about Agile if you’re going to hire developers for a startup
or if you are going to work for an established company. In most
successful companies, Agile processes have replaced the much-maligned
waterfall process that
was once the norm for software development.

 Chapter 10 Mac, Linux, or Windows

This is a book for every beginner, so I’ll explain how we use a text
editor and terminal application for development. First, though, let’s
ask, “macOS, Linux, or Windows?”

10.1 Your Computer

You can develop web applications with Rails on computers running Mac OS
X, Linux, or Microsoft Windows operating systems. Most Rails developers
use macOS or Linux because the underlying Unix operating system has
long been the basis for open source programming.

Later in this chapter, I’ll give links to installation instructions for
macOS and Linux.

For Windows users, I have to say, installing Rails on Windows is
frustrating and painful. Readers and workshop students often tell me
that they’ve given up on learning Rails because installation of Ruby on
Windows is difficult and introduces bugs or creates configuration
issues. Even when you succeed in getting Rails to run on Windows, you
will encounter gems you cannot install. For these reasons, I urge you to
use Cloud9, a browser-based development environment, on your Windows
laptop.

10.2 Hosted Computing

If you are using Windows, or have difficulty installing Ruby on your
computer, try using Cloud9.

Cloud9 provides a hosted development environment. That
means you set up an account and then access a remote computer from your
web browser. The Cloud9 service is free for ordinary use. There is no
credit card required to set up an account. You’ll only be charged if you
add extra computer memory or disk space (which you don’t need for
ordinary Rails development).

The Cloud9 service gives you everything you need for Rails development,
including a Unix shell with Ruby pre-installed, plus a browser-based
file manager and text editor. Any device that runs a web browser will
give you access to Cloud9, including a tablet or smartphone, though you
need a broadband connection, a sizable screen, and a keyboard to be
productive.

10.3 Installing Ruby

Your first challenge in learning Rails is installing Ruby on your
computer.

Frankly, this can be the most difficult step in learning Rails because
no tutorial can sort out the specific configuration of your computer. Get over this hump and everything else becomes easy.

The focus of this book is the background you need to understand Rails. In Book Two, you’ll build a real-world Rails application. Before you
can build the application, you’ll need to install the latest versions
of the Ruby language and the Rails gem. You can get started now, with
the links provided below, or you can wait until you have started reading Book Two.

You’ll spend at least an hour installing Ruby and Rails, so defer the task
until you have sufficient time at your computer.

10.3.1 MacOS

See this article for macOS installation instructions:

Install Ruby on Rails - macOS

10.3.2 Ubuntu Linux

See this article for Ubuntu installation instructions:

Install Ruby on Rails - Ubuntu

10.3.3 Hosted Computing

Cloud9 is a browser-based development environment. Cloud9 is free for small projects. If you have a fast broadband
connection to the Internet, this is your best choice for developing
Rails on Windows. And it is a good option if you have any trouble
installing Ruby on Mac or Linux because the Cloud9 hosted environment
provides everything you need, including a Unix shell with Ruby and RVM
pre-installed, plus a browser-based file manager and text editor. Using
a hosted development environment is unconventional but leading
developers do so and it may be the wave of the future.

See this article for Cloud9 installation instructions:

Install Ruby on Rails - Cloud9

The article shows how to get started with Cloud9.

10.3.4 Windows

Here are your choices for Windows:

	Use the Cloud9 hosted development environment

	Install the Railsbridge Virtual Machine

	Use RubyInstaller for Windows

Cloud9 is ideal if you have a fast Internet connection. If not, download
the Railsbridge Virtual Machine to create a virtual Linux computer with
Ruby 2.2 and Rails 4.2 using Vagrant. Other
tutorials may suggest using
RailsInstaller, but it will not provide an
up-to-date version of Ruby or Rails. Also, RVM does not run on Windows.

 Chapter 11 Terminal Unix

You’ll need to use the Terminal application and Unix commands to develop Rails applications.

If you’ve subscribed to the video series or purchased the advanced tutorials,
you can watch this four minute video:

	UNIX Commands Basics

Most people use a graphical user interface (GUI) to interact with their computers, tablets, or phones. As a developer, instead of using the GUI, you’ll get “under the hood” and work directly with the engine that controls your computer, the operating system. This is what makes software programming look intimidating to learners. You won’t use menus or buttons as you work. Instead, you’ll type commands, line by line, into a window that looks like a computer interface from the 1970s. In fact, the terminal, or console, is a direct legacy of computers that were developed even earlier, in the 1960s. The terminal continues to be the fundamental tool of software development.

11.1 The Terminal

The Terminal application or console gives us access to the Unix command line, or shell.

We call the command line the
shell because it is the outer layer of the operating system’s internal
mechanisms (which we call the kernel).

On macOS, you can use the Terminal application. Experienced
developers often upgrade to the more powerful
iTerm2 application but you can start with the installed Terminal application.

Look for the Terminal in the following places:

	MacOS: Applications > Utilities > Terminal

	Linux: Applications > Accessories > Terminal

	Windows: Taskbar Start Button > Command Prompt

On the Mac, search for the macOS Terminal application by pressing the Command-Spacebar combination (which Apple calls “Spotlight Search”) and searching for “Terminal.” The magnifying glass in the upper right corner of your screen will also launch “Spotlight Search.” Or look in the Applications/Utilities/ folder for the Terminal application. You’ll need to click the name of the application to launch the Terminal.

If you are using Linux then you likely know how to find the Terminal. Look through the menu for your window manager for “Shell” or “Terminal.”

If you have your computer in front of you, launch your terminal application now.

Try out the terminal application by entering a shell command.

$ whoami

Don’t type the $ character. We call it “the prompt.” The $ character is a cue that you should
enter a shell command. This is a longtime convention that indicates you
should enter a command in the terminal application or console.

The Unix shell command whoami returns your username.

$ whoami
danielkehoe

Instead, you might see:

command not found: $

which indicates you typed the $ character by mistake.

If you are new to programming, using a text editor and the shell will
seem primitive compared to the complexity and sophistication of
Microsoft Word or Photoshop. Software developers edit files with simple
text editors and run programs in the shell. That’s all we do. We have to
remember the commands we need (or consult a cheatsheet) because there
are no graphical menus or toolbars. Yet with nothing more than a text
editor and the command line interface, programmers have created
everything that you use on your computer.

11.2 Unix Commands Explained

Unix commands seem cryptic at first. They are a shorthand that’s
familiar to experienced developers. If a Unix command is mysterious, you
can look it up with Google. But a better approach is to use the website:

	explainshell.com

Try it out. Visit the website and enter ls -1p. It’s a Unix command
we’ll use often in Book Two. The site will explain that the command
“lists directory contents, one file per line, with a slash appended to
directories.” Now that you know about explainshell.com, here’s no need
to ever be mystified by a Unix command.

11.3 Getting Fancy With the Prompt

If you watch experienced developers at work, you may see their consoles
are colorful, with lots of information shown in the prompt. You’ll see
Git status, current directory, and RVM gemset or Ruby version. Many
developers replace the standard Bash shell with the Z shell and
Oh-my-zsh. You don’t have
to install the Z shell to get a fancy prompt; the
Bash-it utility is easy to install
and gives you much of the functionality. A fancy prompt is helpful but
requires some Unix skills to install. Don’t worry about getting fancy
now; you can try it down the road.

11.4 Learning Unix Commands

You can follow the tutorial in Book Two without learning any Unix commands in advance. Everything you need to know is given at each step. If time is short, and you want to get
started, you can jump into the Book Two tutorial without learning Unix commands.

Eventually, you’ll realize you’ve learned quite a few basic Unix commands without making an effort. But if you have time, you’ll feel more confident if you spend some time watching a few videos or reading books that
teach the Unix command line basics.

If you haven’t used the computer’s command line interface (CLI) before, I recommend either Learn Enough Command Line to Be Dangerous or Zed Shaw’s free Command Line Crash Course to gain confidence with Unix shell commands.

If you don’t have time for the books recommended above, continue reading this chapter for an introduction to command line basics.

11.5 Exit Gracefully

Before you learn about Unix commands, learn how to exit a command line software program. It is the most important Unix skill you’ll need. If you don’t learn it now, you’ll get stuck inside Unix programs and panic when you can’t return to the command line prompt.

If you’re keeping a notebook for things you learn, write this down:

To EXIT FROM UNIX commands, type:
Control-c

If that doesn't work, try:
q
exit
Control-d
Control-z

If nothing works:
CLOSE THE TERMINAL WINDOW

To type Control-c, hold down the “Control” key while pressing the c key on your keyboard.

There is no universal command to exit a Unix program. Any of these exit techniques might work. None do harm to your computer, so if you get stuck, try them all.

Software developers don’t usually say, “I’m running a Unix program.” Usually they say, “I’ve launched a Unix process.” As you learn more about Unix, you’ll learn about the difference between Control-c, which “kills a process,” and Control-z, which “suspends a process.” Right now, you don’t need to learn about processes or what it means to kill or suspend them.

11.6 Structure of Unix Commands

Unix commands are cryptic if you’ve never seen them before. But there’s a common pattern you’ll begin to recognize.

$ command -option argument

Notice there are spaces between each part of a Unix command.

11.6.1 Prompt

The $ character is the prompt. Sometimes you’ll see extra information before the prompt:

My-MacBook:~ danielkehoe$

The prompt can be customized to provide useful information, such as the name of the current folder or the current user. Some people change the $ character to a different character, such as the > character.

Don’t be confused by a custom prompt and don’t worry about customizing your prompt right now. Just remember that when you see a $ character on the command line, the computer is waiting for you to enter a command.

11.6.2 Command

$ command -option argument

Each Unix command is a tiny software program that is already installed on your computer. Each command does a few simple things, such as list the contents of a folder or create an empty file. There are dozens of Unix commands but you only need to learn a few to develop a Rails application.

Entering a command at the prompt and pressing “Return” (or “Enter”) will result in either of two things. The computer will respond “command not found” or it will run the command and return a result to the terminal window (“the console”).

Sometimes a command is not found because it is not a built-in command and it is not installed on your computer. More often, you’ve made an error in typing the command. Unix doesn’t like capital letters (“uppercase”) so unless there is a capital letter in a filename, you probably will need to type lowercase characters.

11.6.3 Option

$ command -option argument

Most Unix commands have a default response. Many commands have options for different responses if you set an option “flag” or “switch.” You indicate an option with a - character. Most people call that character a hyphen or dash. You may hear programmers call it the “minus” character. Sometimes an option is set with –, that you might describe as “dash dash” or “minus minus.” It’s difficult to see on the typeset page of this book, but to get the - character you type the “dash” character once. In this book, –, which appears as a slightly longer dash, is actually typed as two dashes.

Two options are common among Unix commands: –help and –version (with double dashes). There are also abbreviated versions: -h and -v (with a single dash).

If you have a terminal window open on your computer, try typing:

$ man -v
man, version 1.6c

If I was coaching a beginner, I would say, “Type man space minus v. Don’t forget the space and be sure to type ‘Enter.’”

The computer returns the version number of the current installed man Unix command.

The Unix man command provides online documentation for every Unix command. Try:

$ man man
.
.
.

You’ll see the “man pages” that show exactly what to do with the man command.

You can type man followed by the name of a command to see the documentation for the command.

It is nice to know that every Unix command comes with complete instructions for use. But try reading some man pages and you’ll understand why most developers never look at man pages. Instead they use Google to search online for instructions about how to use Unix commands. Man pages suffer from the worst features of technical documentation. They are complete to the point of obscurity, providing massive detail without highlighting the most common use cases. You’re better off googling for examples of how to use Unix commands.

You’ll be stuck inside the man pages after you enter man man. Refer to your notes about how to exit a Unix program. To get out of the man program, type q to quit.

11.6.4 Argument

$ command -option argument

The term “argument” is borrowed from mathematics. Many Unix commands like a good argument. It is information that will be processed by a Unix command. Often it is a filename, if the command will operate on a file or output to a file.

For example, we can create a file with the Unix touch command or remove a file with the Unix rm command:

$ touch myfile
$ rm myfile

In both cases, we must supply a filename as an argument.

11.7 Quick Guide to Unix Commands

As you learn Unix commands, it is a good idea to write notes for yourself or prepare a personal cheatsheet. The act of taking notes will help you remember the commands. Ultimately, the commands will become second nature through sheer repetition as you develop Rails applications.

Here are the Unix commands you will use most often.

11.7.1 cd

Computers use file systems to control how data is stored and retrieved using s storage system such as a hard drive. By separating the data into individual pieces, and giving each piece a name, the information is easily separated and identified. In offices in the 20th century, documents were grouped together as files and kept in file folders in filing cabinets. Computers don’t really need to organize information as files but early computer users apparently thought of computer storage as electronic file cabinets.

In Unix, you are always expected to be somewhere in the filing cabinet. The folders, or directories, are hierarchical, so a root folder contains multiple folders, which each contains many more folders and files. One set of nested folders contains the programs and utilities which make up the operating system and system utilities. Another set of nested folders contain folders for every user who can sign in to use the computer.

Unix systems can have more than one user account. Each user is given a home directory that contains the files needed by any software programs he or she will use.

Unix expects you to always be somewhere in your computer’s file system. If you get confused or lost, you can always return to your home directory. Unix programmers like cryptic shortcuts that use unique keys from the keyboard. To get to your home directory, you can enter the directory name, which is your user name, or just type the “tilde” or “squiggle” character. On most keyboards, it is the uppercase (shift key) character to the left of the numeral 1. Look at the typeset character ~ in this book. It may look like a smudged dash, but if you look closely, you’ll see the squiggle.

Use the cd (change directory) command to go to your home directory:

$ cd ~

The computer will not return a response to the terminal window, but you’ll be positioned in your home directory. That means Unix commands will look for files in your home directory or save files in your home directory unless you specify another location.

11.7.2 pwd

Discover where you are by asking for the “present working directory.”

$ pwd
/Users/danielkehoe

The Unix pwd command will show the file path of your current directory.

It is easy to get confused and not be sure where you are. When you feel lost, use the pwd command.

11.7.3 ls

Use the pwd command to figure out where you are. Then look around with the ls command.

The ls command lists the files and folders that are contained in your present working directory.

$ cd ~
$ ls
Applications Documents Movies Pictures
Downloads Music Public
Desktop Library

The response shows a list of files and folders. Your list will be different.

You can use options for many different lists of files and folders.

For example, you can see a list of files and folders in a single column with ls -1:

$ ls -1
Applications
Desktop
Documents
Downloads
Library
Movies
Music
Pictures
Public

Using ls -1p, you can see a single column list with slash characters marking the folders:

$ ls -1p
Applications/
Desktop/
Documents/
Downloads/
Library/
Movies/
Music/
Pictures/
Public/

It seems there are no files in my home directory. But is that true?

11.7.4 Hidden Files and Folders

The Unix operating system allows filenames and folder names that start with a dot. These files are hidden unless you use an a option to view them.

$ ls -la
total 400
drwxr-xr-x+ 53 danielkehoe staff 1802 Sep 27 15:48 .
drwxr-xr-x 6 root admin 204 Dec 8 2014 ..
-rw-r--r--@ 1 danielkehoe staff 16388 Dec 8 05:52 .DS_Store
drwx------ 4 danielkehoe staff 136 Dec 8 13:13 .Trash
-rw------- 1 danielkehoe staff 98661 Dec 12 09:00 .bash_history
-rw-r--r--@ 1 danielkehoe staff 4926 Nov 20 22:10 .bash_profile
-rw-r--r--@ 1 danielkehoe staff 792 Sep 2 2013 .bashrc
drwx------ 6 danielkehoe staff 204 Jun 26 20:24 Applications
drwx------+ 5 danielkehoe staff 170 Dec 7 08:33 Desktop
drwx------+ 12 danielkehoe staff 408 Dec 7 08:06 Documents
drwx------+ 9 danielkehoe staff 306 Dec 12 10:57 Downloads
drwx------@ 57 danielkehoe staff 1938 Aug 30 20:27 Library
drwx------+ 3 danielkehoe staff 102 Jul 28 2013 Movies
drwx------+ 5 danielkehoe staff 170 Sep 21 2014 Music
drwx------+ 22 danielkehoe staff 748 Nov 26 20:57 Pictures
drwxr-xr-x+ 5 danielkehoe staff 170 Aug 11 2013 Public

Now the response is very detailed, showing hidden files as well as information about file permissions, owner name, groups that have access permissions, file size, and creation date.

Hidden files are often files that contain configuration settings or user preferences. In the example above, the .DS_Store file is created by the Mac operating system to store the screen position of a Finder window. The .bashrc file contains configuration settings for the Unix shell program named bash.

Box 11.1.

Hidden Files in Cloud9

If you’re using Cloud9, you must change preferences to see hidden files. In the window that contains the file list, there is a gear icon (dark in color and difficult to see). Clicking the gear option will give you options:

	Show Root File System

	Show Home in Favorites

	Show Hidden Files

You must select all three options to see the hidden files.

[image: images/figures/80_cloud9_hidden_files]

11.7.5 Dots

You might notice that the response lists two files that have dots for names:

$ ls -la
drwxr-xr-x+ 53 danielkehoe staff 1802 Sep 27 15:48 .
drwxr-xr-x 6 root admin 204 Dec 8 2014 ..

These are not really files. These are Unix shortcuts for navigating the file system.

The single dot “file” refers to the present working directory.

The double dot “file” is a shortcut for navigating up one level in the file system hierarchy.

Dot files make Unix commands even more mysterious but they are convenient.

11.7.6 open

On a Mac, you can enter a command in the terminal that opens a Mac Finder file browser window. The command and argument open . (open space dot) opens the present working directory. Try it:

$ open .

You should see files and folders listed in the Finder window that are the same as those displayed in the terminal window. Whether you use the Mac Finder graphical user interface or the terminal, you are looking at the same file system.

On the Mac, you can point and click to move around the file system. If you want to move or delete a file, and you don’t remember the appropriate Unix command, you can use open to open a Finder window and make changes the Macintosh way.

11.7.7 mkdir

You can create a new folder with the Unix mkdir command.

Let’s be sure you are in your home directory by using the pwd command. Then create a workspace folder.

$ cd ~
$ pwd
/Users/danielkehoe
$ mkdir workspace
$ cd workspace
$ pwd
/Users/danielkehoe/workspace

After creating the workspace folder, we cd into the folder and check where we are with the pwd command.

11.7.8 touch

You can create a new file with the Unix touch command.

Often it is easier to use a text editor to create and save a new file. But we’ll use the touch command here to create a file we’ll remove later. It is called the touch command because its intended purpose is update the timestamp on files or folders by “touching” the file or folder. But the command is also useful for creating new files.

If you haven’t done anything since entering the previous commands, you’ll still be in your workspace folder. But let’s enter a command to move you to the workspace folder, just in case you are elsewhere.

First we cd using a filepath that contains the ~ “tilde” shortcut for the home directory. In essence, we are saying, “move to the workspace folder contained in the home directory.”

$ cd ~/workspace
$ pwd
/Users/danielkehoe/workspace
$ touch myfile.txt
$ ls -la
total 8
drwxr-xr-x 7 danielkehoe staff 238 Dec 12 15:11 .
drwxr-xr-x+ 53 danielkehoe staff 1802 Sep 27 15:48 ..
-rw-r--r-- 1 danielkehoe staff 0 Dec 12 15:11 myfile.txt

You’ve created a file myfile.txt inside the workspace folder. Then we list the contents of the folder so we can see the new file.

11.7.9 mv

Unix provides the mv command to rename files and folders. It’s an abbreviation for “move” and was originally intended to move a file from one directory to another. You can use it to move files and folders. And you can use it to “move” the name of the file as well.

Let’s rename myfile.txt:

$ mv myfile.txt my_file.txt
$ ls -la
total 8
drwxr-xr-x 7 danielkehoe staff 238 Dec 12 15:11 .
drwxr-xr-x+ 53 danielkehoe staff 1802 Sep 27 15:48 ..
-rw-r--r-- 1 danielkehoe staff 0 Dec 12 15:11 my_file.txt

We’ve changed the name of the file by adding an underscore character. The underscore character is commonly used as a substitute for a space between words in a filename. The Mac operating system can accommodate spaces in filenames but it is bad practice to use spaces in filenames when you work on the command line. You can work with filenames that contain spaces by surrounding the filename with single quote characters (like ‘my file.txt’) but it is inconvenient and most developers simply avoid spaces in filenames.

11.7.10 cp

You can copy a file with cp command. You must enter two filenames as arguments: the name of the original file and the name you want for the copied file.

$ cp my_file.txt my_file_2.txt
$ ls -la
total 8
drwxr-xr-x 7 danielkehoe staff 238 Dec 12 15:11 .
drwxr-xr-x+ 53 danielkehoe staff 1802 Sep 27 15:48 ..
-rw-r--r-- 1 danielkehoe staff 0 Dec 12 15:11 my_file.txt
-rw-r--r-- 1 danielkehoe staff 0 Dec 12 15:16 my_file_2.txt

The ls response shows we have two files.

The cp command requires flags if we want to copy a folder.

We’ll use the mkdir command to create a folder:

$ mkdir myfolder
$ ls -la
total 8
drwxr-xr-x 7 danielkehoe staff 238 Dec 12 15:11 .
drwxr-xr-x+ 53 danielkehoe staff 1802 Sep 27 15:48 ..
drwxr-xr-x 2 danielkehoe staff 68 Dec 13 05:13 myfolder

Let’s try to copy it:

$ cp myfolder myfolder2
cp: myfolder is a directory (not copied).

The error message indicates we cannot copy a directory.

Let’s try it with the -r flag to recursively copy contents from one folder to another:

$ cp -r myfolder myfolder2
$ ls -la
total 8
drwxr-xr-x 7 danielkehoe staff 238 Dec 12 15:11 .
drwxr-xr-x+ 53 danielkehoe staff 1802 Sep 27 15:48 ..
drwxr-xr-x 2 danielkehoe staff 68 Dec 13 05:13 myfolder
drwxr-xr-x 2 danielkehoe staff 68 Dec 13 05:21 myfolder2

With the added flag, we are able to copy a folder.

11.7.11 rm

Let’s remove the files we just created. Unix provides rm, the “remove” command.

First, let’s check that you are still in the workspace folder.

$ pwd
/Users/danielkehoe/workspace
$ ls -la
total 8
drwxr-xr-x 7 danielkehoe staff 238 Dec 12 15:11 .
drwxr-xr-x+ 53 danielkehoe staff 1802 Sep 27 15:48 ..
-rw-r--r-- 1 danielkehoe staff 0 Dec 12 15:11 my_file.txt
-rw-r--r-- 1 danielkehoe staff 0 Dec 12 15:16 my_file_2.txt

Then enter the rm command, providing the filename as an argument:

$ rm my_file.txt
$ rm my_file_2.txt
$ ls -la
total 8
drwxr-xr-x 7 danielkehoe staff 238 Dec 12 15:11 .
drwxr-xr-x+ 53 danielkehoe staff 1802 Sep 27 15:48 ..

The ls command shows the files are gone.

When you delete a file using the Mac Finder file browser, the file is moved to a Trash folder. When you use the Unix rm command, the file is gone forever. There is no Trash folder for recovering a file when you use the rm command.

11.7.12 Removing a Folder

Let’s remove a folder. We’ll assume you are in the workspace folder and the folders you created earlier are still there.

$ ls -la
total 8
drwxr-xr-x 7 danielkehoe staff 238 Dec 12 15:21 .
drwxr-xr-x+ 53 danielkehoe staff 1802 Sep 27 15:48 ..
drwxr-xr-x 2 danielkehoe staff 68 Dec 13 05:13 myfolder
drwxr-xr-x 2 danielkehoe staff 68 Dec 13 05:21 myfolder2

The ls command shows we have folders myfolder and myfolder2.

We can’t remove a folder with the ordinary rm command:

$ rm myfolder
rm: myfolder: is a directory
$ ls -la
total 8
drwxr-xr-x 7 danielkehoe staff 238 Dec 12 15:11 .
drwxr-xr-x+ 53 danielkehoe staff 1802 Sep 27 15:48 ..
drwxr-xr-x 2 danielkehoe staff 68 Dec 13 05:13 myfolder
drwxr-xr-x 2 danielkehoe staff 68 Dec 13 05:21 myfolder2

We get an error message and the ls command shows the file is still there. This can be frustrating for someone who is not skilled with Unix.

You’ll need to “set a flag” (use an option) to remove a folder using the rm command.

$ rm -rf myfolder
$ rm -rf myfolder2
$ ls -la
total 8
drwxr-xr-x 7 danielkehoe staff 238 Dec 12 15:11 .
drwxr-xr-x+ 53 danielkehoe staff 1802 Sep 27 15:48 ..

Now the ls command shows the folders are gone.

We use the r option to remove the contents of the folder recursively. And the f option to force the removal without asking for confirmation.

11.7.13 The Mouse and the Command Line

The mouse belongs to the graphical user interface. That’s why it doesn’t work as expected on the command line. Try entering a command at the prompt:

$ rm -rf notmyfolder

If you want to edit the argument and change “notmyfolder” to “myfolder,” you can try clicking with your mouse at the point where you wish to change the text. But your mouse click will be ignored. It seems you must use the delete key to back up from end of the line to retype the argument.

But there’s a trick that works on most computers. If you press “Option” and click with the mouse, you can edit the command and argument as you would expect.

You can also move around on the command line with Ctrl-a to go to the beginning of a line, Ctrl-e to move to the end of the line, and Ctrl-u to delete everything on the command line. If you can’t remember these shortcuts, don’t worry, you can just use the delete key to move backward and retype when you need to make changes to commands.

11.7.14 Arrow Keys

The most useful trick for typing text on the command line is the “up arrow” key, which scrolls through a list of previous commands. The “down arrow” key scrolls the history of commands in the opposite direction (forward if you’ve moved backward).

With Unix, you only need to type a command once and then you can scroll back to it with the “up arrow” key. It is a real timesaver.

11.7.15 Tab Completion

There’s another trick developers use to save time when entering commands and arguments in the terminal. If you are entering a filename, and the file already exists in the present working directory, you can press the “tab” key to autocomplete the filename after typing a few unique letters of the filename.

If there is more than one filename with the same initial letters, the Unix shell will balk and beep. Pressing tab again will list all the matching filenames. Continue typing a few more letters until the Unix shell can identify one unique filename and autocomplete.

11.8 Why Abbreviations?

Our quick introduction to Unix commands taught you about ls, cp, rm and other common Unix commands. If the commands were spelled out as “list,” “copy,” or “remove” they might be easier to remember. Some old-timers say Unix was designed to be efficient on slow teletype terminals. That may be true, but I believe the abbreviations persist because programmers are lazy and want to type as few characters as possible. Unix commands may seem obscure but with repetition they will become familiar. Until then, keep a personal cheatsheet as your reference.

As you learn Rails and develop applications, you’ll gain experience with Unix commands. What you’ve learned so far is enough to get started.

 Chapter 12 Text Editor

You’ll need a text editor
for writing code and editing files.

Word processing programs, such as Microsoft Word, will not work because
they introduce hidden formatting codes into text files.

Programmers’ text editors provide syntax
highlighting, making software code more readable and programmers more
productive. Simple text editors such as TextEdit for macOS, or
WordPad for Microsoft Windows, provide no syntax highlighting and should
be avoided.

12.1 You Don’t Need an IDE

Programmers who come to Rails from other platforms, such as Java or C++,
often ask for recommendations for an IDE, or an integrated development environment. These are software applications that combine a text editor with built-in
tools such as a debugger. Some Rails developers use JetBrains RubyMine,
Aptana Studio, or
Komodo but most Rails
developers use only a text editor and terminal application. You don’t
need an IDE unless you’re in the habit of using one. For a beginner,
they are cumbersome and add little additional value.

12.2 Which Text Editor

Old-timers and hardcore technologists use text editors that run in the terminal window:

	vim

	Emacs

There is a long-time rivalry between fans of Emacs and vim (and its predecessor vi). Between the two, vim is more popular.

Emacs and vi are popular among skilled programmers because there’s no need to leave the terminal window to edit a file. Programmers keep their fingers on the keyboard and don’t need to reach for a mouse to use the text editor. That makes programmers more productive. In the long run, learning vim or Emacs will make you more productive as well as impressing your colleagues with your technical skill. Both vim and Emacs are difficult to learn. If you’re a beginner, don’t attempt to learn vim or Emacs if you’re short on time.

Most beginners will use a text editor with a graphical user interface (GUI). You’re likely to encounter one of these:

	Atom

	Sublime Text

	TextMate

Atom and Sublime Text are available for macOS, Windows, or Linux.

12.2.1 Install Atom

Atom is an open-source text editor, developed by a team at GitHub. It is the newest of the text editors. If you have not yet installed a text editor, I recommend getting Atom. It can be downloaded and used for free.

If you don’t have a text editor yet, download and install Atom now.

12.2.2 Other Choices

Sublime Text has been popular since 2008, particularly among developers who began learning Rails in the last seven years. Developers are expected to pay $70 USD for use of Sublime Text, which removes a nagging popup that reminds users to pay for Sublime Text.

Textmate has been around since 2004 and remains popular among a small group of veteran Rails developers who have never bothered to learn vim or switch to Sublime Text or Atom. It is a commercial product priced at $56 USD.

12.2.3 How To Use a Text Editor

You can find tutorials for these text editors on YouTube. Or skim the Atom documentation or Sublime Text documentation.

For a book with tips and tricks about using a text editor efficiently, see Learn Enough Text Editor to Be Dangerous.

12.3 Editor Shell Command

Carefully follow the instructions for installing your text editor. Installation is like any other desktop application; however, there is an unusual and important final step. Developers want to launch a text editor and open a file for editing by typing a command in the terminal window.

If you’ve installed Atom, click the “Install shell commands” item under the “Atom” menu to enable the atom command. If you do so, you can open a file in Atom from the command line:

$ atom myfile.txt

Sublime Text has a similar configuration option for the Mac, though it takes more fiddling to set up. The Sublime Text documentation explains how. If you need more help, see Olivier Lacan’s blog post, Launch Sublime Text 3 from the Command Line. After you’ve completed the configuration, you can open a file in Sublime Text from the command line:

$ subl myfile.txt

Opening a file from the command line is a big win for productivity.

It’s even more useful to open an entire folder from the command line. In the “Terminal Unix” chapter, you learned that Unix has a “dot file” that represents the present working directory. To open an entire folder in Atom, try:

$ atom .

The text editor window will display a “tree view” of files and folders in a window pane. Click on any file to open it. It is very convenient to see an entire project at a glance in your text editor.

 Chapter 13 Learn Ruby

Experienced Rails developers debate whether beginners should study Ruby before learning Rails.

Most experienced Rails developers recommend that you study Ruby before attempting to learn Rails. Most code camps teach a week or two of Ruby before introducing web development with Rails. Given that Rails is based on the Ruby programming language, it seems logical to teach Ruby as a prerequisite to learning Rails.

There are several flaws with this approach. Every “learn Ruby” book, video, or online course teaches Ruby with a series of classroom exercises. A concept is introduced, followed by examples, and then a programming puzzle or quiz, much like the way arithmetic was taught to children in the 1950s. If you are academically gifted, you can learn the basics of Ruby with this approach. But many people become frustrated and don’t learn well this way.

Though experienced Rails developers think a beginner should learn Ruby this way, many actually knew other programming languages already, and learned Ruby by skimming a language reference to notice differences, and googled for help when they needed to figure out how to write something in Ruby. They improved their skills by reading blogs or watching screencasts such as Avdi Grimm’s Ruby Tapas. But mostly they learned Ruby by working on real-world problems that required skill with Ruby.

The fact is, though you can get oriented to the basics of Ruby in a week, it takes a year or more of regular use of the language to gain proficiency. Rubyists develop their skill with Ruby over years, not weeks. That’s true of most general purpose programming languages. Learning Ruby is a lifelong education program, not a short course.

Does that mean you’ll never learn Rails? On the contrary. Despite what experienced Rails developers will say, you can begin building Rails applications without developing Ruby proficiency. Rails is largely a DSL, or domain specific language, with its own keywords and directives built using Ruby, and following the Ruby language syntax. Many developers started learning Rails by following tutorials to build Rails applications without first studying Ruby. You will pick it up as you go along.

Before my colleagues lambast me for leading newbies astray, let me say that trying to learn Rails without making an effort to learn Ruby is inefficient and counter productive. As you follow a Rails tutorial, make a parallel effort to learn Ruby. One will support the other. By building real applications with Ruby and Rails, and making an effort to learn more about Ruby at the same time, you’ll be motivated to learn Ruby and you’ll retain more knowledge of Ruby. And you’ll be a better Rails developer.

13.1 Ruby Language Literacy

In this book series, I’ve taken a realistic approach. In Book Two, you will get started building a real-world Rails application. You will gain familiarity with the syntax of the Ruby language by studying the code that is needed to build the application. After you’ve been exposed to real-world Rails code, you’ll read a short chapter to learn about the basic features of the Ruby language. The goal of the chapter is to develop Ruby language literacy. With a grounding in real-world Rails code, and a short introduction to the Ruby language, you’ll have a solid basis to develop your Ruby knowledge plus motivation to do so.

What you need, more than anything, when you start working with Rails, is reading knowledge of Ruby. With a reading knowledge of Ruby you’ll avoid feeling overwhelmed or lost when you encounter code examples or work through a tutorial. Later, as you tackle complex projects and write original code, you’ll need to know enough of the Ruby language to implement the features you need. But as a student, you’ll be following tutorials that give you all the Ruby you need. Your job is to recognize the language keywords and use the correct syntax when you type Ruby code in your text editor.

Your hardest challenge will be to learn the names of the structures you see in code examples. This is why it is helpful to work your way through a short introduction to Ruby. You’ll need to be able to recognize when you are looking at an array or a hash. You should recognize when you are looking at an iterator or the Ruby block syntax. Eventually, you’ll recognize more exotic Ruby formulations such as the lambda. It is okay if you can’t write a lambda function or even know when to use one; many Rails developers start work before learning Ruby thoroughly.

By all means, if you love the precision and order of programming languages, dive into the study of Ruby from the beginning. It’s good advice, just not for everyone. If you’ve got the time
and inclination, get started with these recommended books and videos before you read Book Two. If you can, study them at the same time you work on the project in Book Two. At the very least, look at these resources after you finish Book Two and before you start another tutorial. You’ll be glad you did.

13.2 Resources for Learning Ruby

13.2.1 Collaborative Learning

The best way to learn Ruby is to actually use it. That’s the concept
behind this site:

	Exercism.io

With Exercism, you’ll work though code exercises and get feedback from
other learners.

13.2.2 Online Tutorials

	TryRuby.org - free browser-based interactive tutorial from Code School

	Codecademy Ruby Track - free browser-based interactive tutorials from Codecademy

	Ruby Koans - free browser-based interactive exercises from Jim Weirich and Joe O’Brien

	Ruby in 100 Minutes - free tutorial from JumpstartLab

	Code Like This - free tutorials by Alex Chaffee

	RailsBridge Ruby - basic introduction to Ruby

	CodeSchool Ruby Track - instructional videos with in-browser coding exercises

13.2.3 Books

	Learn To Program - free ebook by Chris Pine

	Learn To Program - expanded $18.50 ebook by Chris Pine

	Learn Ruby the Hard Way - free from Zed Shaw and Rob Sobers

	Beginning Ruby - by Peter Cooper

	Programming Ruby - by Dave Thomas, Andy Hunt, and Chad Fowler

	Eloquent Ruby - by Russ Olsen

	Books by Avdi Grimm, including Confident Ruby and Objects on Rails.

13.2.4 Newsletters

	Practicing Ruby - over 90 helpful articles on Ruby

	RubySteps - weekly lessons by email from Pat Maddox

13.2.5 Screencasts

	RubyTapas - $9/month for access to over 100 screencasts on Ruby

 Chapter 14 Crossing the Chasm

In my books, you learn how programming is
actually done in practice. In this book, you learn about the culture of Rails beyond
the code. In Book Two, you’ll follow step-by-step instructions to build and deploy
a real Rails application.

This chapter is here to help you surmount the problems that come
after you finish my books. You can wait and read it later, after you’ve
built applications using tutorials, or you can read it now and learn to
overcome the challenges you’ll face when you are done reading tutorials.

What comes next partly depends on your goals. You may be eager to launch
a startup, you may want a job as a developer, or you may have a project
to tackle at work or in your spare time. Whatever you choose to do,
you’ll face the challenge of building an application without
instructions. Here I’ll give you ideas about overcoming that challenge.

14.1 Facing the Gap

There’s a name for the obstacle that lies in wait for beginners who
teach themselves to code by following a tutorial. I call it the
“tutorial gap.” It’s the yawning chasm you face when it is time to build
a custom application of your own. Even though you’ve just built and
deployed a working application, the moment you are without instructions,
the chasm will open wide. You’ll feel it most acutely when you realize
you don’t know where to start. Should you search for a gem? Should you
start by building a view, a model, or a controller? Should you do
test-first development and write a test? What should you test if you
don’t know where to start?

A similar problem lies in wait for beginners the first day on the job. You’ll hear it called the “junior gap.” The term refers to the chasm
between the time a developer is hired and becomes a “junior dev.” A
“junior dev” is a team member who is more-or-less self-sufficient,
learning new skills without being a burden for other developers, and
able to contribute to a company at a level that increases team
productivity. Whether self-taught, hired after graduation from a
university, or from a 9 or 12 week code camp, new staff members seldom
have the skills to be fully productive members of a team. Your success
at a new job depends on how quickly you overcome the junior gap.

The “tutorial gap” and the “junior gap” are versions of the same chasm. You’ll cross the chasm each time you build an application. The more
applications you build, the narrower the chasm becomes, and the less
help you need, until you’ve crossed the chasm so many times that panic
is replaced by delight when someone asks you to implement something
you’ve never encountered before. That’s the point when you’ve become a
self-sufficient and productive developer.

If you assume that becoming a successful developer depends on acquiring
technical skills, the chasm may thwart you. The chasm cannot be crossed
with technical knowledge, no matter how much you learn about Ruby,
Rails, JavaScript or any other technology. Crossing the chasm requires
“soft skills,” including cultivating your own problem-solving abilities,
and realizing that software development is fundamentally a social
activity.

In this chapter, I’m going to describe two ways to cross the chasm. First, I’ll give you a technique to jump start work on a custom
application. It’s a strategy that will enhance your problem-solving
abilities. After that I’ll suggest how to get help from a mentor,
focusing on the social practice that is at the heart of software
development.

14.2 Bridging the Gap With a Strategy

When you start work on a custom application, you’re like a writer who
has to write an essay and faces a blank screen. If you’ve been taught to
write an essay, you probably learned to make an outline and start with a
topic sentence or introductory statement. Not every writer starts that
way, but it’s a strategy to get started. You can use a similar strategy
to get started with custom application development. Here’s a process you
can use:

	Ask: Why will someone want to use your application? Write a product description.

	Ask: What will a visitor first see and do? Write a user story for the home page.

	If you like to think visually, create wireframes for some of the important features.

	Create user stories for some of the important features.

	Generate a starter application with rails new or Rails Composer.

	Pick any user story. Make a static page using HTML to mock up what the user will see.

	Write a feature test to verify the content on your static page. This is your first code.

	Create a model. Use the model to set a variable containing some string from the static page.

	Create a controller. Give it the same name as the model. Create a route for the controller.

	Replace the static page with a dynamic page. Use the controller to set an instance variable and render a view.

	Does your feature test still pass? Modify your feature test if necessary.

	Ask: How will data displayed on the page get into the model? From a third-party API? A user-submitted form?

	Replace the hard-coded string in the model with dynamic data obtained from a user or an API.

	Check your feature test. Does it still pass? Do you need to change the test to use the model?

	Ask: Have you implemented the user story? Do you need to revise the user story?

	Commit your work to Git. Then throw it away if you’re not satisfied. You can always “do over” later.

	Ask: Is there another user story you can implement? Get started again.

You may have to repeat this process many times before you have something
you can keep. Each time, you will discover what you don’t know. Perhaps
you haven’t expressed a user story well and you need to rethink your
feature. Or you’ve reached the limit of your technical knowledge and you
need to do some research and further study. Each time you repeat this
process you are practicing crossing the chasm.

Not every writer starts an essay the same way, and not every developer
will use the strategy detailed above. If you’ve ever faced writers’
block, you may have heard this advice from teachers: Write something,
anything, just to get started. It’s the same with software code: Just
begin, anywhere. If you follow the strategy described above, you’ll have
a place to get started. It is a process you can repeat when you start
any application. If you need more help, see the book Practicing Rails by Justin Weiss, which
provides advice and exercises to overcome the tutorial gap.

14.3 Bridging the Gap With Social Practice

Let’s consider the social aspect of software development.

If you work on your own, trying to master the art of software
development, it will take you a very long time, you’ll need
extraordinary patience and tenacity, and you won’t become a very good
software developer. To accelerate the process, and improve your skill,
you must reach out to others. If you’re shy and introverted, this will
be hard; if you’re bossy or reluctant to reveal your shortcomings, it
may also be difficult. However, you must make the effort if you want to
cross the chasm.

Software development often looks like a solo activity but it is not. Developers talk to users to improve the user interface and product
features. Open source libraries, whether gems or full frameworks like
Rails, are developed collaboratively. Code reviews are an opportunity to
ask others to help you improve your implementation. Pairing is an
intense and effective way to write better code and share knowledge. You’ll learn more, and faster, from both experienced developers and
inexperienced peers, when you work with others.

14.3.1 Making an Effort

It is important to have a strategy to get started on your own, as
described above. You must make an initial effort, even if picking
yourself up by your bootstraps doesn’t get you very far. No one,
particularly software developers, wants to help someone who can’t show
they’ve made a best effort on their own. You may surprise yourself when
you make an initial effort; you’ll find out what you know and identify
what you need to learn. Start a list of topics you need to research or
questions you need to answer. Do research. If no clear answer emerges,
list the possibilities and show them to someone else. Even if you think
you’ve found the answer on Stack Overflow or a blog, show someone your
initial problem and the solution you’ve found. Find out if your
colleague agrees or has another perspective. Showing someone your
research shows you’ve made an effort and it will make it easier to ask
for help when research doesn’t provide a solution. (Refer to the “Get
Help When You Need It” chapter if you’re not sure where to do research.)

14.3.2 Conversation Starters

You can ask people to answer questions online, on Stack
Overflow,
Reddit, Quora,
mailing lists, forums, IRC channels, or even by directly sending email
to developers. This counts as social activity but it is inherently
limited. Open-ended interaction is better, either in person or through
video chat. Prime the pump with to-the-point questions, as you would on
Stack Overflow, but allow the conversation to meander. Make sure your
conversation includes conversation helpers like these:

	What do you think?

	How would you do this?

	Is there a better way?

	What do you think I should look at next?

Ask the kind of questions that elicit opinions that you can’t ask on
Stack Overflow. Never forget to acknowledge the gift you’re receiving of
time and knowledge. Express your thanks, state clearly how the
conversation has benefited you, and offer to report back on how the
collaboration has helped your progress.

14.3.3 Pay It Forward

Don’t be shy about asking for help. If you’ve made a best effort to
solve a problem on your own, and you’re willing to help others in the
future, you’ll get all the help you need, and more.

There’s an unwritten rule of the open source movement. It applies
whenever you ask a stranger for help, whether opening an issue on GitHub
or asking for help with a project. You are not entitled to
anything, whether its software code, a bug fix, or just help,
if you’re only consuming. Open source is free for the taking
but you’re not welcome if you’re a mooch. Luckily for all of us,
causality rules do not apply (or at least there’s no temporal
causality). That means, if you contribute something in the future, help
will be forthcoming, sometimes more profusely than you’ve asked for. You
must contribute in kind, of course. If you offer to pay money to have a
bug fixed, you’re violating the spirit of open source, and you can
expect either grumpiness, a hefty consulting fee, or both. If you
indicate you’re willing to help with documentation or code, you’ll be
welcomed even if you’re currently incapable of contributing. This
applies in an interesting way to beginners. If you show you’ve tried to
solve a problem on your own, and ask for help, many developers will help
without any compensation other than the conviction that someday you’ll
help someone in a similar situation. Software development relies on a
booming pay it
forward economy.

14.4 Finding a Mentor

Now that you’ve given some thought to the social aspect of software
development, let’s consider where to go for help.

When career advisors talk about closing the junior gap, they’ll often
point to the importance of mentorship as the key element in becoming a
skilled software developer. It’s just as important when you’re
developing software for a startup or a personal project. Mentorship will
help you cross the chasm.

You may ask, how can I find a mentor? In your mind’s eye, you may be
imagining the mentor that will help you become a skilled Rails
developer. He or she is a few years older than yourself, has a great job
leading a team at a successful startup, probably contributes to several
well-known open source gems, and takes a break every Saturday for a few
hours to teach you how to code. Sorry, that is not likely to happen.

The mentors who will help you will not fit the picture of a wise sage or
crone, no more than Prince Charming or Princess Buttercup will ever be
anyone’s spouse. In most situations, the mentorship relationship will be
unacknowledged. The seeds of mentorship lie in any interaction where you
ask for help and receive guidance.

Mentorship is a relationship you must cultivate, much like friendship. And, like friendship, you will seldom ever ask someone to be your
mentor. Most people would balk at the awkwardness, either because they
don’t see themselves as qualified, or because it suggests an open-ended
commitment and responsibility that is intrusive. Like making new
friends, it is your job to seek out mentoring moments, ensure the
experience is mutually rewarding, and suggest the possibility of
repeating the experience. Mentorship is a relationship built from a
series of successful mentoring interactions. Repeat the interactions and
you have mentorship.

14.5 Creating Mentorship Moments

In the chapter “Get Help When You Need It,” you learned where to look
for help. Let’s consider where you can look for opportunities to
experience mentorship moments.

14.5.1 Online

When you ask for help on Stack
Overflow,
Reddit, or
Quora, the answers will be most useful when you
focus narrowly on a specific question. Mentorship comes from open-ended
interaction, when a conversation can move in unanticipated directions,
so most online interactions seldom turn into mentorship moments.

Online interactions may help you find people who can coach you. Clicking
on a user’s name on a site such as Stack Overflow, Reddit, or Quora will
show you a user’s profile. When someone is helpful or knowledgeable,
check if they show their geographic location in their profile. If they
don’t, perhaps they’ve provided a link to their website or Twitter
account. If not, you may be able to send a private message. Reach out
and ask where they are located, if they have time to meet to answer more
questions, or can suggest anyone in your city who might be helpful. It
is worth checking to see if someone is local even though most people
online are not nearby.

14.5.2 GitHub

GitHub is a special case. Interactions on GitHub are at the core of the
Rails community. It’s where open source software gets built. Collaboration on GitHub leads to mentorship, friendships, and business
partnerships. That’s why it is so important to build a credible GitHub
profile by uploading the projects you build while learning, to show that
you are working steadily at becoming a better programmer.

When you look at a repository on GitHub, look at the account of the
person who maintains the project. Look at the commits and the issues. Click through to the profiles of the people who’ve made the commits or
commented on the issues. Experienced developers often show their
location in their profile and provide their email address. If you find
someone in your city, make contact. Of course, don’t ask a stranger
point-blank to be a mentor! Tell them about your experience and what
interests you. Ask where you can meet developers locally. You may learn
about a meetup or user group meeting. If your contact is helpful, you
may have an opportunity to meet for coffee.

14.5.3 Meetups

Meetups are a prime place to cultivate in-person mentorship moments. All
large metro areas have active meetups for web developers, Rails
developers, programmers, or startup entrepreneurs. If you’re in a rural
area, make the drive once a month to the big city to connect with the
community. To find the meetups, search
Meetup.com or google “ruby rails (my city)”. If you’re near a university campus, check for activity on the campus. If
you’re in a tech hub such as San Francisco, there’s a meetup almost
every night of the week. Smaller cities have relevant meetups monthly. If you can’t find a meetup, start one!

When you visit a meetup, remember that mentorship can be hidden in
anyone. Like any public event, you’ll meet people who are flakey,
bigoted, garrulous, prone to halitosis or innumerable personality
quirks, as well as a minority who are fascinating and obviously
knowledgeable. Don’t dismiss anyone. You’ll find mentorship moments
where you least expect them.

14.5.4 Workshops and Classes

You may be surprised that workshops and classes are not the ideal place
to find a mentor. Obviously, given a good instructor and a relevant
curriculum, a workshop or class is a great place to learn. However, it
is very unlikely that a teacher will become an ongoing mentor. The
instructor’s goal is to share knowledge with a group of people, so any
focus on you as an individual has to be limited. Furthermore, the
instructor is probably not available outside of the class or on an
ongoing basis. Don’t sign up for a class hoping the instructor will
become your mentor.

However, a workshop or class is an ideal place to connect with peers. There is no other place where you’ll easily find other people who want
to learn the same things as you. When I teach, I’m surprised how often
people come to a class expecting their education will end as soon as the
class is over. If you take a class, seize the opportunity to make one
new friend who will be your study partner after the class ends. Better
yet, organize a study group to continue after the class is over. If you
have only one new study partner, he or she can flake out. Instead, get
together with three or four other learners once a week. Support each
other, share your excitement, and invite mentors to come speak to your
study group.

Peer learning has much in common with mentorship. The leading code camps
recognize that collaborative problem-solving skills are as important as
technical skills. When students team up to work through exercises or
build applications, there’s a natural give-and-take as each takes turns
making discoveries and sharing knowledge. You don’t have to enroll in
code camp to be part of a peer learning environment; you can create it
yourself in a study group. This isn’t a relationship of mentorship, but
it is an opportunity to experience mentorship moments.

14.5.5 On the Job

You are most likely to find a commitment to mentorship on the job. If
you’ve been hired to work as a Rails developer, at a company with Rails
developers on the team, you’re in an ideal environment to learn. Not
everyone has the skills to be a good mentor and you may struggle if you
are stuck with a senior developer who is a know-it-all or assumes you
know more than you do. Still, you have immediate access to developers
with knowledge and the company has every reason to encourage you to
learn. Unless the company has an explicit program to assign coaches to
new hires, you will probably not call someone your mentor. Instead,
recognize that you can cultivate mentorship moments by asking for
guidance beyond the immediate assignment. In a stressful environment
where your team is delivering code against deadlines, not everyone may
be able to devote time to teaching. You should seek mentorship moments
where you can.

Some companies are committed to building a culture of mentorship. When
you are looking for a job, make it your priority to seek a job offer
from companies where you will find mentors. For a first job as a
developer, the opportunity to learn on the job is far more valuable than
any other benefits. When you interview, ask if the company encourages
pair programming. Ask if you will have time to work on a pet project to
learn new skills, and if it will be acceptable to ask your teammates to
answer questions or provide a code review for your pet project. Ask if
the company encourages team presentations about new technologies. Ask if
anyone from the company volunteers to teach at workshops or gives
presentations at meetups or conferences. Some hiring managers will be
proud to describe the company’s commitment to developer education. If
they’re not, it’s a red flag that the company may not be a good fit for
you.

Small startups are not a good place to look for mentorship, if the
runway is short and the founders are trying to launch before funding
runs out. Companies that have closed a Series A
round (the first release
of stock to venture capital firms and other private equity investors)
will still be tightly focused on getting a product to market, with no
time to coach new hires. As a company takes additional rounds of
investment, beyond the Series B round, the company will have grown
beyond an initial two or three engineers and may recognize the value of
hiring and coaching inexperienced developers. To some companies,
mentorship is part of a strategy to develop their technical depth. These
are the companies that are ideal for new developers.

14.6 What’s Next

If your goal is to start a career as a Rails developer, your objective
should be to find a job at company that is committed to mentorship. You’ll need to learn more than what is offered in this book and the next, but you can
continue learning while you “go social” to cultivate mentorship moments
and meet people who can introduce you to companies that are hiring Rails
developers. Going to meetups, collaborating on code, and participating
in a study group will help you find mentors and help you find a job.

If you are eager to launch a startup, or plan to work on a personal
project, your next step will be different. Let’s consider what you
should do after finishing this book if you’re an entrepreneur,
developing a lifestyle business, or working on a personal “side
project.”

14.6.1 Entrepreneurs

If you want to launch a startup, stop and ask yourself what your
priorities should be. Startup success depends on asking yourself every
day, “What is the most important task I need to accomplish today?” Chances are, it is not learning to code. Working through my books,
you’ll learn enough to work with a skilled developer, whether a cofounder, an
employee, or contractors. Your most important task is to determine the
product/market fit
for your business idea. You must develop a Minimum Viable
Product (MVP) and
start the process of acquiring customers who can tell you if your
product has value. Anything else defers the day of judgment when real
customers will tell you whether they are willing to spend money on your
product.

If you are pursuing your own business vision, you’ll only delay judgment
day if your priority is to learn Rails. If you haven’t already, start
looking for a technical cofounder or people you can hire (if you have
your own funds). Angel investors and venture capitalists are reluctant
to fund a solo founder, even when an entrepreneur is highly skilled
technically. Investors place more importance on the ability and track
record of the team than on a business idea; obviously, a skilled team is
a better investment risk than a solo founder who just started learning
Rails. In today’s investment climate, you won’t be seeking investment if
you don’t yet have an MVP and customer traction. But you should start
recruiting your team. The good news is that you’ve learned enough about
web development to have credibility when approaching a potential
technical cofounder. Among developers, there is no one more ridiculed
than the non-technical founder who makes no effort to learn to code and
expects someone else to do all the technical work. You’re not
that guy or girl. You could build your web application yourself, given
enough time. But in the best interests of your business, you should look
for a partner who will be your technical mentor, guide, and helpmate as
you become a better coder and build out your MVP.

You can seek a technical cofounder in the same way you seek mentorship
moments. Your agenda will be larger; anyone who is a mentor or peer may
be a potential business partner. Look for help to improve your technical
proficiency. As you build a personal relationship with a mentor or peer,
you may have an opportunity to introduce someone to your business
vision. It is very unlikely you can build a business on your own, so
start looking for a partner while you continue to learn to code and
develop your MVP.

You won’t be having meetings with potential partners every day. On days
when you are not looking for a partner, work on the user stories that
will define the requirements for your MVP. You don’t need anything more
than you’ve learned in this book to develop your user stories and plan
your product. Work on wireframes and show your ideas to anyone who will
listen. Take a break from product planning to work on your coding
skills. Try tackling one or two user stories and see if you can
implement a basic feature you need for your MVP. There’s no better way
to learn to code than building the product that you need for your
business, especially if you get help and feedback along the way.

14.6.2 Lifestyle Businesses and Personal Projects

Don’t let anyone discourage you if you have an idea for a web
application that will supplement your earnings from a job, or even let
you quit your job to enjoy a “lifestyle.” The investment community
disdains lifestyle businesses that have limited “upside” (the revenue
growth that rewards investors). Personally, I think lifestyle businesses
are great. Without the pressure from investors, and with income from an
existing job, you can take your time to learn to code, enjoying the
process of learning application development with your goal in mind. It
is still worthwhile to seek out a mentor, but you can continue to pursue
learning on your own with all the resources we list in the next chapter.

Personal projects can become lifestyle businesses when they begin to
generate revenue. Of course, there are many personal projects that are
not intended to be moneymakers, for example, a web application for a
faith group or a charity, or just a side project that helps you learn to
code. Again, seek mentorship moments, or work in a group that learns
together, and you’ll develop your skills faster. Play around with user
stories and wireframes to see if it helps you organize your project. Try
writing feature tests. You may not need to write tests for a personal
project but you may discover a feeling of competence and confidence that
goes with testing. With a personal project, the journey is the reward. Indulge in the luxury of learning for its own sake and focus on the
satisfaction of seeing applications run that you’ve built with
technologies that are new to you.

14.7 Build Applications

If you want to become a skilled Rails developer, nothing is more
important than building applications. As you’ll see in the next chapter,
there is so much to learn about web application development that you can
(and likely will) continue to learn until the web goes dark. Don’t try
to learn it all. Start building applications now.

Building applications puts everything you learn in practical context. The features you want to build will set the priorities for what you
learn next. If you want users to sign in to an application, you’ll learn
about authentication. If you want want to show stock prices or sports
scores, you’ll learn about JavaScript and charts. There’s no better way
to learn than by building.

Build simple applications at first, with only one small feature. Take
them all the way from user stories to deployment. Use Rails
Composer if you want to get started fast
so you can focus on your custom features. Commit your projects to your
GitHub account, no matter how trivial or broken. Putting your projects
on GitHub will show that are working hard and gaining experience. If
you’re going on job interviews, employers probably won’t have time to
look at your GitHub account, but you’ll gain points in a job interview
if you can point to a GitHub repository to show something you’ve built,
or when you answer a question like, “What is the hardest problem you’ve
had to solve?”

Some beginners set a goal, such as building one new application every
week. That’s a great plan. When your applications get more complex, they
will make take more than a week to build, but keep on building. If you
don’t have any ideas for what to build, ask for ideas on
Reddit or
Quora and the indefatigable commenters will
gladly answer. At a minimum, you should build (and thoroughly
understand) each of the starter applications you can build with Rails
Composer.

With every application you build, the chasm of the “tutorial gap” will
narrow and you will broaden your ability to tackle unfamiliar problems
and challenges.

In the next chapter, we’ll consider specific technical skills and I’ll
make recommendations for books and tutorials that will increase your
technical proficiency,

 Chapter 15 Level Up

With this book, you’re on the way to becoming a successful Rails developer. You’ve learned about basic concepts and
discovered where to go for help. But there’s much more to learn about
Rails and web application development. This chapter will suggest the
next steps on your path to learning Rails.

15.1 What to Learn Next

In Book Two, you’ll build
a simple web application. It will cover the basics:

	Rails directory structure

	using Git

	installing gems

	configuring an application

	the request-response cycle

	model-view-controller architecture

	application layout and views

	front-end frameworks

	forms

	sending mail

	connecting to external services

	deploying an application

	analytics for traffic and usage

In addition, you’ll get an introduction to the Ruby language and the
basics of testing.

Visit tutorials.railsapps.org
to learn how to get Book Two.

Here are topics you should study after Book Two:

	Databases

	Testing

	Sessions and Authentication

	Authorization

	JavaScript

I’ll explain each topic and suggest where to learn more.

15.1.1 Databases

Book Two will explain how to create a model, a software object that represents
data in a database.

When you create a model, you create an object that handles data only for
the brief life of the request-response cycle, when it is active in a
computer’s working memory. You’ll want data to persist beyond the brief
request-response cycle, after objects disappear from working memory. Rails does not include a built-in database. It offers the flexibility of
using several different industrial-grade database systems. Relational
database management systems such as SQLite,
PostgreSQL,
MySQL, and
Oracle all use
Structured Query Language (SQL) as
an interface to store and retrieve data. These databases run separately
from a web application, requiring their own database servers.

Rails provides a component, named Active Record, that
connects to these database servers. Active Record is a framework for
Object-Relational Mapping (ORM), connecting application models to
database tables in a relational database management system (DBMS). Active Record makes it possible to save model data as a record in an
external database, preserving complex relationships among the data.

Application development would be easy if we could just use spreadsheets
to save our data. However, some data, such as a document, is too large
to fit in the columns and rows of a spreadsheet. More significantly,
database management systems are designed to accommodate relationships
among the data. That’s why they are called relational database
management systems. For example, an ecommerce application might have a
Customer model and an Order model. Active Record allows developers to
use the Rails API to describe associations among models and interact
with a database. For example, you can make sure that an order is not
created unless it is associated with a customer. Additionally, Active
Record provides a query interface. You can use the query interface to
find all orders associated with a particular customer.

Where to Learn

For a focused, fast introduction to Rails and databases, you should read
the book:

	Easy Active Record for Rails Developers by Jason Gilmore ($29 USD)

It is my recommended follow-on to learn more about databases.

15.1.2 Testing

You learned about the basic concepts and terminology of testing in
Book Two. If you’re working on a personal project or your own startup, you
can learn more about Minitest
to gain the skill you need to write robust tests. If you expect to work
with other Rails developers professionally, you’ll need to learn to use
RSpec for testing.

Where to Learn

Every intermediate-level Rails book talks about testing,
without any introduction to the terminology and concepts of testing. Review the “Testing” chapter in Book Two, then learn to set up and use
RSpec with a tutorial I’ve written, The RSpec
Tutorial, which is part
of the Capstone Rails Tutorials
series.

To learn more about RSpec, read these two excellent books:

	Everyday Rails Testing with RSpec by Aaron Sumner ($19 USD)

	Rails 4 Test Prescriptions by Noel Rappin ($25 USD)

You don’t have to read these books immediately, but be sure to add them
to your reading list.

15.1.3 Authentication and Sessions

Most web applications need a way for users to sign in, permitting access
to some features of the application only for signed-in users. The
popular gem Devise is used to
add authentication for users who register with an email address and
password. OmniAuth is a gem
for authentication using a service such as Facebook, Twitter, or GitHub. Most Rails developers will use these gems because they are robust and
well-tested.

To understand how authentication works, you’ll need to learn about
sessions in a web application. The web, as originally built, was
stateless. A server simply responded to a request by delivering
a file. To enable ecommerce applications,
cookies were adopted in 1997
as a way to preserve state. Each time the browser makes a request, it
will send a cookie. A web application will check the value of the cookie
and, if the value remains the same, the application will recognize the
requests as a sequence of actions or a session. A session
begins with the first request from a browser to a web application and
continues until the browser is closed. Cookie-based sessions give us a
way to manage data through multiple browser requests. Rails does all the
work of setting up an encrypted, tamperproof session. The data we most
often want to persist throughout a session is an object that represents
the user.

Where to Learn

To get started quickly with either Devise or OmniAuth, I’ve written two
tutorials which are part of the
Capstone Rails Tutorials series:

	Devise Quickstart Guide

	OmniAuth Tutorial

As a learning exercise, it is worthwhile to build authentication from
scratch without Devise or OmniAuth. Michael Hartl’s popular book shows
how to build authentication from scratch:

	Ruby on Rails Tutorial by Michael Hartl (free online)

15.1.4 Authorization

We use authentication to verify a user’s registered identity, so we know
the person signing in is the same person who signed up earlier. We use
authorization to limit access to pages of a web application. Authorization is typically restricted by role, so users are assigned
roles with differing access privileges. In the simplest implementation,
we check if a user has a specific role (such as administrator) and
either allow access or redirect with an “Access Denied” message. Roles
are attributes associated with a user account, and often implemented in
a User model.

There are no standard conventions for implementing roles and
authorization in Rails. Developers often implement roles from scratch
and use gems such as Pundit or
CanCanCan to implement
authorization. For most web applications, you’ll need to learn how to
implement roles and authorization.

Where to Learn

To learn about authorization, start with a free article I’ve written on
Rails Authorization. I’ve also written two tutorials which are part of the
Capstone Rails Tutorials series:

	Role-Based Authorization

	Pundit Quickstart Guide

These tutorials explain the code from the
rails-devise-roles
and
rails-devise-pundit
example applications, which you can generate with Rails Composer as
starter applications.

15.1.5 JavaScript

JavaScript is a general-purpose programming language (like Ruby). It is
the language used to manipulate web pages within a browser. Every web
developer needs to know JavaScript. For a Rails application, you might
develop application features such as auto-complete search forms using a
combination of jQuery and
AJAX techniques. For
more sophisticated web applications, such as a single-page application
(SPA) that loads in the browser as a single web page and offers a fluid
user experience similar to a desktop application, you’ll need to learn
to use a JavaScript framework such as Ember.js,
AngularJS, React, or
Backbone.js. If you intend to specialize as a
front-end developer, focusing on user interaction and the browser
interface, you’ll need to become an expert in JavaScript.

Where to Learn

There are many resources for JavaScript, more than for learning Ruby or
Rails. Here are good curriculum guides:

	Learn JavaScript by Mozilla

	The Odin Project: JavaScript and jQuery

The JavaScript course from
Codecademy is universally
recommended, as is the book Eloquent
JavaScript.

15.1.6 Other Topics

There is much more to learn before you gain full proficiency as a Rails
developer. Here’s an illustration:

[image: images/figures/rails-competencies]
Figure 15.1: Rails Competencies.

The graphic above is from a blog post, This is Why Learning Rails is
Hard,
by Brook Riggio of the Code Fellows code
camp in Seattle. You can see the graphic in
detail. The first time I saw it, I felt despair. It is a mind map of all the
topics a skilled developer should know. The branches on the right side
are topics that are specific to Rails, as well as general skills
required of a Rails developer, such as Git, the Ruby language, and
software engineering competencies. The branches on the left are general
areas of knowledge that would be understood by any web developer, such
as the Unix command line, web fundamentals, deployment, testing, and
SQL. Brook Riggio says, “If this looks intimidating to you, you’re not
alone…. Learning Rails is hard because there are many independent
concepts to learn.” I recommend you spend half an hour each day googling
each topic listed on Brook Riggio’s map. In three months, you’ll have a
“big picture” of the knowledge areas that are important to a Rails
developer. You can’t learn everything at once, so dive further into the
topics that interest you. As you tackle new projects, you’ll learn more,
and you’ll add depth to your understanding of each topic on the map.

15.1.7 Curriculum Guides

Brook Riggio’s map gives you a list of topics for learning. But it is
helpful to tackle the topics in a sequence that makes sense. You’ll also
need recommendations for the best learning materials. For a curriculum
that organizes the topics you need to become a web developer, I
recommend:

	The Odin Project

It is a unique community-driven curriculum, organized by Erik Trautman,
the founder of Viking Code School,
that gives you a roadmap of what to learn, and where to learn it.

15.2 Places to Learn

What’s your preferred learning mode? Books, classrooms, videos, online
courses? I guess you’re comfortable with books, so I’ll recommend the
best ones for further study. But first let’s consider other modes of
learning.

15.2.1 Code Camps

Starting in New York City with General
Assembly in 2011, and Dev
Bootcamp in San Francisco in 2012, the market
for developer education has been booming. Right now, in San Francisco,
there are a dozen organizations offering immersive code camps, and
dozens more in large cities worldwide. These organizations offer eight-
to twelve-week courses, priced around $10,000 to $12,000 USD. For a
list of code camps, see these websites:

	Course Report

	Switch

	Techendo Reviews

Code camps are a great way to become a developer, if you can afford the
cost, and intend to recover the cost by finding a high-paying job as a
developer. The best code camps create an environment of peer-based
learning, where you pair with other students to solve technical problems
and build applications, just as you would in the workplace. Code camps
also provide relentless pressure to learn, from teachers and peers, but
primarily from yourself. The quality and depth of technical knowledge
you’ll acquire varies greatly depending on the code camp curriculum and
the individual instructors they’ve hired. All code camps provide the
motivation and social context for accelerated learning, delivering
self-confidence that comes from the encouragement and feedback of
teachers and peers.

If you don’t have money to pay for code camp, all is not lost. You can
teach yourself Rails with books and, with effort, you’ll be good enough
to start a web-based business or look for a job. I recommend that you
build your self-confidence by developing applications on your own. And
certainly, find other learners and study together. Most Rails developers
are self-taught, at least within the domain of web application
development, so code camps or university programs are wonderful, if you
can afford the cost, but not essential.

15.2.2 Other Classrooms

It’s unusual to find a university or community college that offers
classes in web development with Rails. In the US, university computer
science programs focus on analytical reasoning and the conceptual
underpinnings required for advanced research in the field. Some
community colleges teach web development but it is difficult for the
schools to find experienced Rails instructors, especially given the
disparity in salaries between teaching and software engineering. However, universities or community colleges are good places to meet
other students and form a study group, to provide social support for
learning.

Classes taught in the community, often free or low-cost, are
surprisingly good places to learn. Teachers and organizers are highly
motivated and may be experienced Rails developers giving back to the
community. Community-based classes or workshops are often poorly
publicized, so you’ll have to search hard for these courses.

Women have a good chance of finding peer organizations that teach
programming and web development with Rails. Start by looking at the
course schedules for these organizations:

	Rails Girls

	RailsBridge

	Girl Develop It

	Women Who Code

These organizations only offer introductory classes, so you’ll have to
study on your own for deeper knowledge. Short courses such as weekend
workshops are valuable because you can find other students who want to
start a study group.

15.2.3 Online Courses

It’s no longer necessary to go to a classroom to go to school. Online
courses range from online code camps that provide videos and one-on-one
coaching, to websites that offer a selection of pre-recorded videos
packaged as a course, to MOOCs (massive open online
courses)
offered by consortiums of universities.

Chasing the runaway success of classroom-based code camps, you’ll find a
number of companies that offer code schools delivered online. Here are a
few that combine videos with personal coaching:

	Flatiron School Online Campus

	Bloc.io

	CareerFoundry

	Code Union

	Launch School (formerly Tealeaf Academy)

	The Firehose Project

	Thinkful

	Thoughtbot Upcase

	Viking Code School

The online code schools provide some of the benefits, specifically
curriculum and coaching, of the classroom-based code camps, at a
fraction of the cost. Videos, homework projects, and online mentors
can’t reproduce the intense peer-based learning of the classroom code
camps. But you don’t have to quit your job or move to a another city.

MOOCs provide university-level education online. You can search a
database of MOOCs at the Class Central
website. I recommend the edX course:

	CS169.1x Engineering Software as a Service

It is a nine week class, it is free, and it is taught four times a year. It is based on a software engineering class taught at the University of
California, Berkeley. The professors have written their own textbook to
accompany the class, Engineering Software as a Service: An Agile
Approach Using Cloud Computing. The class is
very worthwhile, if you have the time and it fits your schedule.

15.2.4 Videos

Online code camps and MOOCs provide supervised learning, combining
videos with access to coaches or instructors. If you want self-paced
study, without access to a coach, you’ll find hundreds of videos online,
varying greatly in quality. There’s one big problem with videos: The
ones that are easiest to find are often outdated. It is very difficult
for producers to revise videos and, as you know, Rails changes often.

Michael Hartl, author of the Ruby on Rails Tutorial,
a book I recommend, offers
screencasts to accompany the book. The cost is $149 USD.

Go Rails offers dozens of intermediate and
advanced screencasts. Chris Oliver started producing the videos in
mid-2014, so they are newer than most Rails screencasts you’ll find on
the web. These are task-focused videos, good for supplementing a book or
course. Some are free, some are available with a $19 USD subscription.

RailsCasts seems to always be recommended by
Rails developers, and these screencasts were once among the best ways to
learn about Rails. RailsCasts creator Ryan Bates left the community in
mid-2013 and, unfortunately, many of the screencasts are no longer
current or relevant. Still, they are worth a look.

Lynda.com offers a Ruby on Rails 4 Essential
Training
12 hour video series at a cost of $25 USD for a monthly subscription. It covers Rails 4.0 and is an adequate introduction at a very low cost.

Thoughtbot Upcase, formerly known as
ThoughtBot Learn Prime, is a program from the respected ThoughtBot
consulting firm that provides videos for $49 USD monthly, with coding
exercises and a personal coach at a higher price. You can see the
Upcase curriculum for an overview. The
program is well-regarded.

Code School is famous for its Rails for
Zombies
course, and the company offers a dozen additional courses that cover
both Ruby and Rails. The courses combine instructional videos with
in-browser coding exercises at a cost of $29 USD per month. The quality
is high, the videos are current, and the company tries to make the
topics entertaining.

Pragmatic Studio, publishers of many
high-quality Rails books, offers a series of 26 videos for $179 USD.
The course is a solid introduction to Rails.

Baserails.com is a video series, available
with a $25 USD monthly subscription, that shows you how to build an
application. It’s good if you want practice before building something on
your own.

One Month Rails is an 8
hour video series aimed at beginners. It’s priced at $99 (though you
can find discount codes if you search). If you’ve read Book Two, you
should skip One Month Rails and focus on intermediate-level books and
courses.

Treehouse is a
subscription site ($25 USD per month) with a big budget and many course
offerings. The courses on Ruby and Rails don’t provide enough depth to
take you beyond a beginner level.

Tuts+
offers several Rails courses. Some are out of date.

Codecademy offers a series of courses that
combine videos with interactive quizzes on
Ruby and
JavaScript. The course
on JavaScript is often recommended. However, the format is very much
classroom-oriented without practical context.

Udemy offers a
range of video courses on Ruby and Rails. This is crowd-sourced content
(like YouTube) and the quality varies greatly. If you’ve found a great
course on Udemy, email me and I’ll list it here in the next version of
the book.

Skillshare is another source of
crowd-sourced video courses. Many offerings on Ruby and Rails are out of date.

As you can see from the long list, videos are plentiful. Avoid the old
ones.

15.2.5 Books

At the beginning of this chapter, I recommended Easy Active Record for Rails Developers by Jason Gilmore because it is focused on databases and Rails, the next thing you need to study. Other books deserve mention.

One book stands out among all:

	Ruby on Rails Tutorial by Michael Hartl (free online)

More Rails developers read, and recommend, Michael Hartl’s book than any other. For you, after reading this book and Easy Active Record for Rails Developers, Michael Hartl’s book will be a review of what you’ve learned. I hope you will breeze through it, given the fundamental concepts you’ve already learned.

Two other books on Rails are notable:

	Agile Web Development with Rails 5 by Sam Ruby

	The Rails 5 Way by Obie Fernandez

Both are dense, comprehensive, and authoritative. In my opinion,
you should start building Rails applications before digging into these
books. As you begin building applications, dip into any of these books for further
explanation and insight.

I recommend the book by Justin Weiss, Practicing
Rails: Learn Rails Without Being
Overwhelmed. The book provides useful technical
tips and tricks, such as techniques for debugging, but the focus of the
book is overcoming challenges that new developers commonly face. You’ll
find advice about keeping up with the Rails community and managing time
and motivation when learning Rails, as well as overcoming “the tutorial
gap” to begin building your own applications.

Several other books should be on your reading list to improve your
skill:

Rebuilding Rails by Noah Gibbs. If you
like to discover how things work, you’ll gain a deep insight into Rails
from Noah Gibbs’s book, as he shows you how to build a framework like
Rails from scratch.

Practical Object-Oriented Design in Ruby
by Sandi Metz. A must-read that
teaches the techniques of master programmers.

In addition to the books listed here, I recommended several books to
help you learn the Ruby programming language at the the end of the
chapter, “Just Enough Ruby.”

15.3 A Final Word

Keep in mind the reason you’re here. You’re learning Rails so that you
can build applications. I’ve given you a book that is dense with links
and recommendations for further resources. I’ve met many students who
are overwhelmed with all these resources. Some people postpone building
anything because there is so much more to learn. Don’t be that person. Skip everything I’ve recommended in this chapter and just get started
building. When you need to learn more, you can come back and dig deeper.

Good luck with building the application in Book Two. I hope you like my
approach and writing style so that you’ll continue with the Capstone Rails Tutorials.

 Chapter 16 Version Notes

If you’ve gotten this book directly from my website,
you have the most recent version of the book. If
you’ve gotten your copy of the book elsewhere, you may have an older
version that doesn’t have the newest updates.

You’ll find the version number and release date on the first page of this book (under the book title). Check the learn-rails GitHub repository to find out
if you have the newest version of the book. The README page on the GitHub repo always
shows the most recent version number for the book and the tutorial application.

Here are the changes I’ve made.

16.1 Version 4.0.0

Version 4.0.0 was released November 25, 2016

Revisions throughout. Fixed broken links. Added links to videos.

Removed references to Nitrous.io because Nitrous.io is out of business.

16.2 Version 3.0.0

Version 3.0.0 was released January 14, 2016

Extensive revision throughout the book, and the length of the book increased, so the book is now two books. Book One contains the introductory and self-help chapters and can be read without access to a computer. Book Two contains the step-by-step tutorial and requires use of a computer.

16.3 Version 2.2.2

Version 2.2.2 was released October 30, 2015

In the “Front-End Framework” chapter, updated filename to
1st_load_framework.css.scss from framework_and_overrides.css.scss to
reflect a change in the rails_layout gem.

16.4 Version 2.2.1

Version 2.2.1 was released September 19, 2015

Updated references to Ruby from version 2.2.0 to 2.2.3.

Updated references to Rails 4.2.0 to Rails 4.2.4.

Updated Visitor model subscribe method for the new Gibbon 2.0 API.

Recommending Cloud9 instead of
Nitrous.io because Nitrous.io is no longer
free.

16.5 Version 2.2.0

Version 2.2.0 was released June 6, 2015

For Amazon customers, added an offer to access the online version or
download a PDF at learn-rails.com.

Google now requires use of OAuth 2.0 for application access to Google
Drive. The implementation is considerably more complex than the previous
implementation using a Gmail address and password. I’ve dropped the
“Spreadsheet Connection” chapter.

Minor clarification in the “Layout and Views” chapter.

16.6 Version 2.1.6

Version 2.1.6 was released March 17, 2015

Remove references to the Thin web server in the “Deploy” chapter.

Correct version number for gem ’sass-rails’ in various Gemfile
listings. Fixes issue 49 and an error
“Sass::SyntaxError - Invalid CSS” when the Foundation front-end
framework is used.

In the “Testing” chapter, the file
test/integration/home_page_test.rb was missing
require ’test_helper’.

Updated “Rails Composer” chapter to describe new options.

Minor improvements and corrections of typos.

16.7 Version 2.1.5

Version 2.1.5 was released March 4, 2015

Use the Ruby 1.9 hash syntax in the validates_format_of :email
statement.

Minor improvements and corrections of typos.

16.8 Version 2.1.4

Version 2.1.4 was released January 3, 2015

Updated references to Ruby from version 2.1.5 to 2.2.0.

Specify the “v0” version of the google_drive gem in the “Spreadsheet
Connection” chapter.

16.9 Version 2.1.3

Version 2.1.3 was released December 25, 2014

Updated references to Rails 4.1.8 to Rails 4.2.0.

16.10 Version 2.1.2

Version 2.1.2 was released December 4, 2014

Released for sale as a Kindle book on Amazon, with new cover art (same
cat, though).

RailsApps Tutorials now named the Capstone Rails
Tutorials.

Updated references to Ruby from version 2.1.3 to 2.1.5.

Updated references to Rails 4.1.6 to Rails 4.1.8 (minor releases with
bug and security fixes).

Removed link to the (now defunct?) Lowdown web
application in the “Plan Your Product” chapter.

Changes to the “Asynchronous Mailing” section of “Send Mail” chapter to
describe Active Job in Rails 4.2.

Minor improvements to the “Dynamic Home Page,” “Deploy,” “Configure,”
“Troubleshoot,” and “Create the Application” chapters.

16.11 Version 2.1.1

Version 2.1.1 was released October 22, 2014

Minor rewriting for clarity.

Updated “Precompile Assets” section of the “Deploy” chapter.

Mentioned explainshell.com in the “Get
Started” chapter.

Mentioned Zeal as a Linux alternative to
Dash.

Recommended book Practicing Rails
by Justin Weiss.

16.12 Version 2.1.0

Version 2.1.0 was released October 12, 2014

Updated references to Ruby from version 2.1.1 to 2.1.3.

Updated references to Rails 4.1.1 to Rails 4.1.6 (minor releases with
bug and security fixes).

Four new chapters:

	“Testing”

	“Rails Composer”

	“Crossing the Chasm”

	“Level Up”

Use ActiveModel instead of the
activerecord-tableless
gem.

In the “Configuration” chapter, add a note to use spaces (not tabs) in
the config/secrets.yml file.

Updated “Gems” chapter to add a troubleshooting note to the “Install the
Gems” section (about errors with the Nokogiri gem).

Added a section on “Multiple Terminal Windows” to the “Create the
Application” chapter.

In the “Get Help When You Need It” chapter, updated the list of
recommended newsletters, replaced rubypair.com
with codermatch.me, and added a section on
code review. Removed reference to defunct Rails Development
Directory.

16.13 Version 2.0.2

Version 2.0.2 was released May 6, 2014

Updated references to Rails 4.1.0 to Rails 4.1.1 (a minor release with a
security fix).

For Nitrous.io users, clarify that “http://localhost:3000/” means the
Preview browser window.

Update “Gems” chapter, section “Where Do Gems Live?” to add more
explanation.

Minor change to code in the “Mailing List” chapter, setting
‘mailchimp_api_key’ explicitly when instantiating Gibbon, for easier
troubleshooting.

16.14 Version 2.0.1

Version 2.0.1 was released April 16, 2014

Minor updates for Rails 4.1.0. Mostly small changes to the “Configure”
and “Front-End Framework” chapters.

Added an explanation that, in the config/secrets.yml file,
domain_name doesn’t have to be kept secret and set as a Unix
environment variable.

Added a hint about passwords that use punctuation marks (plus a
completely irrelevant note about profanitype).

Replaced Rails.application.secrets.gmail_username with
Rails.application.secrets.email_provider_username. Also replaced
gmail_password with email_provider_password. Just trying to make
things a little more generic in case Gmail is not used as a provider.

Added a section explaining the horrid details of the
config.assets.precompile configuration setting in the
config/application.rb file. Please convey my displeasure to those
responsible for subjecting beginners to this travesty.

In the “Deploy” chapter, restored
RAILS_ENV=production rake assets:precompile because Rails 4.1.0 no
longer barfs on this.

Added resources to the “Get Help When You Need It” chapter.

Minor rewriting of the introduction.

16.15 Version 2.0.0

Version 2.0.0 was released April 8, 2014

Updated references to Ruby from version 2.1.0 to 2.1.1.

Updated the book to Rails 4.1. The application name is no longer used in
the config/routes.rb file.

Rails 4.1 changes the app/assets/stylesheets/application.css.scss
file. Updated the “Front-End Framework” chapter. Also expanded the
explanation of the Foundation grid.

In Rails 4.1, configuration variables are set in the
config/secrets.yml file. The Figaro gem is dropped, along with the
config/application.yml file. Updated the “Configure” chapter and
references to configuration variables throughout the book.

In the “Deploy” chapter, changed
RAILS_ENV=production rake assets:precompile to
rake assets:precompile to avoid the error “database configuration does
not specify adapter.”

Updated “The Parking Structure” chapter with comments about “Folders of
Future Importance” that experienced developers often use: test/,
spec/, features/, policies/, and services/. Updated the
“Spreadsheet Connection” chapter to mention service-oriented
architectures (SOA).

Extended the section on “Limitations of Metaphors” in the “Just Enough
Ruby” chapter to include the example of gender when modeling a person.

Minor rewriting for clarity throughout.

16.16 Version 1.19

Version 1.19 was released February 1, 2014

Updated the book to use Foundation 5.0. Foundation 5.0.3 was released
January 15, 2014 (earlier versions 5.0.1 and 5.0.2 were incompatible
with Rails Turbolinks and the Rails asset pipeline). Changed the Gemfile
to remove gem ’compass-rails’ and replace gem ’zurb-foundation’ with
gem ’foundation-rails’. Updated a line in the “Front-End Framework”
chapter for Foundation 5.0:

$ rails generate layout foundation5 --force

The files navigation.html.erb and application.html.erb are
changed for Foundation 5.0. The Bootstrap front-end framework is now independent of Twitter, so I
call it “Bootstrap” not “Twitter Bootstrap.” Revised the chapter “Just Enough Ruby” to incorporate suggestions from
technical editor Pat Shaughnessy. Revised the chapter “Request and Response” to incorporate suggestions
from technical editor Kirsten Jones. Minor rewriting for clarity throughout.

16.17 Version 1.18

Version 1.18 was released January 10, 2014

Updated references to Ruby from version 2.0.0 to 2.1.0. Changed one line in the “Front-End Framework” chapter to accommodate a
change in the rails_layout gem version 1.0.1. The command was:

$ rails generate layout foundation4 —force

Changed to:

$ rails generate layout:install foundation4 —force

Updated the “Configure” chapter to add ActionMailer configuration values
to the file config/environments/development.rb.

16.18 Version 1.17

Version 1.17 was released December 21, 2013

Updated Rails version from 4.0.1 to 4.0.2 .

Changed Gemfile to remove gem ’compass-rails’, ’> 2.0.alpha.0’ and
replace it with gem ’compass-rails’, ’> 1.1.2’. The 2.0.alpha.0
version was yanked from the RubyGems server. The compass-rails gem is
needed for Foundation 4.3. It will not be needed for Foundation 5.0.

Changed Gemfile to replace gem ’zurb-foundation’ with
gem ’zurb-foundation’, ’> 4.3.2’. Foundation 5.0 will require
gem ’foundation-rails’ but we can’t use it until an incompatibility with Turbolinks is
resolved. So we will stick with Foundation 4.3.2 for now.

Revised code in the “Analytics” chapter. Using ready page:change
instead of page:load to accommodate Turbolinks. Updated
the segmentio.js file to use a new tracking script from Segment.io. Updated instructions for setting up Google Analytics tracking on
Segment.io. Added concluding paragraphs “Making Mr. Kadigan Happy” to
the “Analytics” chapter.

Minor clarification in the “Front-End Framework” chapter to explain that
the navigation bar won’t show a dropdown menu until the next chapter,
when we add navigation links.

Minor clarification in the “Spreadsheet Connection” chapter to explain
that Google may block access if you attempt access from a new and
different computer (including Nitrous.io).

Added cat names in the “Credits and Comments” chapter.

Revised “Getting Help” chapter and added “Version Notes” chapter.

Minor clarifications, plus fixes for various typos and insignificant
errors.

 Chapter 17 Credits and Comments

Was the book useful to you? Follow
@rails_apps on Twitter and tweet some praise. I’d love to know you were helped out by the tutorial.

You can find me on Facebook or Google+. I’m happy to connect if you want to stay in touch.

If you’d like to recommend the book to others, the landing page for the book is here:

	http://learn-rails.com/learn-ruby-on-rails.html

I’d love it if you mention the book online, whether it is a blog post, Twitter, Facebook, or online forums. Recommending the book with a link makes it easier for people to find the book.

17.1 Credits

The book was created with the encouragement, financial support, and editorial assistance of hundreds of people in the Rails community.

Daniel Kehoe wrote the book and implemented the application.

17.1.1 Financial Backers

The following individuals provided financial contributions of over $50 to help launch the book. Please join me in thanking them for their encouragement and support.

Al Zimmerman, Alan W. Smith, Alberto A. Colón Viera, Andrew Terry, Avi Flombaum, Brian Hays, Charles Treece, Dave Doolin, Denzil Villarico, Derek Rockwell, Eito Katagiri, Evan Sparkman, Frank Castle, Fred Dixon, Fred Schoeneman, Gant Laborde, Gardner Monks, Gerard de Brieder, GoodWorksOnEarth.org, Hanspeter Leupin, Harald Lazardzig, Harsh Patel, James Bond, Jared Koumentis, Jason Landry, Jeff Whitmire, Jesse House, Joe Wilmoth Jr., John Shannon, Joost Baaij, Juan Cristobal Pazos, Kathleen Sidenblad, Laird Hayward, Logan Hasson, Ludovic Kuty, Mark Gilbert, Matt Esterly, Mike Gilbert, Niko Roberts, Norman Cohen, Paul Philippov, Robert Nadar, Rogier Hof, Ross Kinney, Ruben Calzadilla, Stephane Moreau, Susan Wilson, Sven Fuchs, Thomas Nitsche, Tom Michel, Youn Shin Kang, Yuen Lock

17.1.2 Editors and Proofreaders

Dozens of volunteers offered corrections and made suggestions, from fixing typos to advice about organizing the chapters.

Alberto Dubois Ribó, Alex Finnarn, Alex Zielonko, Alexandru Muntean, Alexey Dotokin, Alexey Ershov, André Arko, Andreas Basurto, Ben Swee, Brandon Schabel, Cam Skene, Daniella Zimmermann, Dapo Babatunde, Dave Levine, Dave Mox, David Kim, Duany Dreyton Bezerra Sousa, Erik Trautman, Erin Nedza, Flavio Bordoni, Fritz Rodriguez Jr, Hendri Firmana, Ishan Shah, James Hamilton, Jasna Vukovic, Jeremy Schneider, Joanne Daudier, Joel Dezenzio, Jonah Ruiz, Jonathan Lai, Jonathan Miller, Jordan Stone, Joreal Whitfield, Josh Morrow, Joyce Hsu, Julia Mokus, Julie Hamwood, Jutta Frieden, Laura Pierson Wadden, Marc Ignacio, Mark D. Blackwell, Mark Everhart, Michael Wong, Miguel Herrera, Mike Janicki, Miran Omanovic, Neha Jain, Norman Cohen, Oana Sipos, Peter Rangelov, Richard Afolabi, Robin Paul, Roderick Silva, Sakib Ash, Sebastian Lobato Genco, Silvia Obajdin, Stas Sușcov, Stefan Streichsbier, Sven Fuchs, Tam Eastley, Tim Goshinski, Timothy Jones, Tom Connolly, Tom Michel, Tomas Olivares, Verena Brodbeck, Will Schive, William Yorgan, Zachary Davy

17.1.3 Photos

Images provided by the lorempixel.com service are used under the Creative Commons license. Visit the Flickr accounts of the photographers to learn more about their work:

	photo of a white cat by Tomi Tapio

	photo of a cat by Steve Garner

	photo of a cat by Ian Barbour

The photo of a fluffy white cat by Tomi Tapio is used in the application.

17.2 Comments

I regularly update the book. Your comments and suggestions for
improvements are welcome.

Feel free to email me directly at
daniel@danielkehoe.com.

Are you stuck with code that won’t work? Stack Overflow
provides a question-and-answer forum for readers of this book. Use the
tag “learn-ruby-on-rails” or “railsapps” when you post your question.

Found a bug in the tutorial application? Please create an
issue on GitHub.

Table of Contents

		Frontmatter

	Free Offer and More

	Introduction

	Concepts

	What is Rails?

	Why Rails?

	Rails Challenges

	Get Help When You Need It

	Plan Your Product

	Manage Your Project

	Mac, Linux, or Windows

	Terminal Unix

	Text Editor

	Learn Ruby

	Crossing the Chasm

	Level Up

	Version Notes

	Credits and Comments

OEBPS/Images/image00103.jpeg

OEBPS/Images/image00102.jpeg

OEBPS/Images/image00101.jpeg

OEBPS/Images/image00100.jpeg

OEBPS/Images/image00099.jpeg

OEBPS/Images/image00098.jpeg

OEBPS/Images/cover00104.jpeg

